Detecting Hidden Images and Text

Abdul Kather Aman Kamat
Dept. of ISE Dept. of ISE
CMR Institute of Technology CMR Institute of Technology
Bengaluru, India Bengaluru, India
?@cmrit.ac.in amkr22ise @cmrit.ac.in

Abstract—In an age of digital communication, in fact exclusion
and secretly altering information is already one of the most used
techniques. It is both a form of creativity and a crime. Hidden
images and texts—produced by such techniques as Steganography,
Watermarking and Cryptic encoding—force users to look at
the surface, but be concerned what lies beneath. For instance,
This paper explores how this hidden content is created, what
motivations might drive its use, and evolving techniques to detect
it. It draws on both technical and literary viewpoints, and focuses
precisely upon that contradiction which exists between secrecy
and discovery in the digital era.

Index Terms—Secrecy , Machine Learning,Cryptography,
Sternography, React Native, IoT, Pixel Variance,

I. INTRODUCTION

Hidden communication is not new. People in ancient times
used invisible ink, coded notes, carved signs, and secret rituals
to share messages. When photos and computers arrived, this
idea shifted into steganography. It hides data inside files so
well that no one spots it.

Today, people hide data in images, documents, videos, and
even in neural network weights. This raises sharp questions
about security, crime checks, false claims, and trust online.

A. Rise of Hidden Content in Modern Media

Social media, chat apps, and cloud storage give people many
ways to hide data. We post billions of images each day. Any
one of them can carry a secret message.

Most users do not know this. They see a photo or PDF and
think it is plain. They miss the fact that hidden data can sit
inside a file without changing how it looks.

The same idea works with text chats. A simple line of text
can hide extra bits of data. This gap in awareness brings risk.
People share files that may carry hidden parts. Those parts can
move across apps or cloud servers without anyone noticing.

Hidden data can travel far and stay unseen for long periods.
This creates clear concerns about safety and trust online.

B. Definition and Scope of Hidden Content

Hidden information can take many forms.

Hidden text can use invisible marks, extra layers, coded tags,
tiny text, or font tricks. Hidden images can sit inside another
image as a small or faint layer. Encrypted data can hide inside
pixel patterns as bits that look normal. Media files can hide
extra frames, quiet audio layers, or coded motion changes.

Pallavi S. Reethu S.
Dept. of ISE Dept. of ISE
CMR Institute of Technology CMR Institute of Technology
Bengaluru, India Bengaluru, India
pas22ise @cmrit.ac.in reet22ise @cmrit.ac.in

This paper looks mainly at ways to find hidden text and
hidden images. It also mentions media cases to give a full
view of the topic. .

C. Importance of Detection

Hidden content detection matters because it helps solve
cybercrime and stops secret data leaks. It keeps networks safe
and helps experts check if digital proof is real. It also blocks
covert terror messages and supports fair use of digital media.
These methods play a key role in spotting deepfakes or edited
images, which helps protect trust in online content.

D. Organization of the Paper

Section II covers past work on hidden content and ste-
ganalysis. Section III gives a long review of key research
papers. Section IV explains the method used for the multi-
layer detection system. Section V describes the test setup and
breaks down the results. Section VI closes the study and points
to future work. . .

II. RELATED WORK

Detecting hidden data has been studied across many fields,
yet clear gaps remain. Work on images often uses statistical
checks, DCT or Fourier methods, and CNN models. These
tools search for small pixel shifts that point to secret data.
Document studies focus on metadata, hidden layers, and
change logs. These checks help reveal edits or extra parts that
do not match the visible file. Text studies look for odd word
use, strange patterns, or unseen Unicode marks that may carry
hidden bits. AI work aims to spot secret data made by GANs
or autoencoders, which can hide information with great care.

Many key researchers shaped this field. Fridrich, Holub,
and Ker built strong tools for image checks based on stats
and pattern shifts. Topkara and Chang added key ideas for
text checks, showing how small changes in writing can hide
data. Deep learning later pushed this work forward by finding
patterns that people cannot see or track by hand.

Even with these advances, most studies focus on a single
type of file. Few systems combine image, text, and document
checks into one clear model. This paper aims to fill that gap
by offering a wider and more joined approach.



III. LITERATURE SURVEY

A. Paper 1

Johnson et al. (1998) showed early statistical methods for
finding hidden data. They focused on simple LSB changes
in images. Their study showed that small pixel edits leave
clear marks in histograms and noise patterns. These marks
help reveal hidden data even when the image looks normal.

[?].

B. Paper 2

Fridrich (2005) introduced Regular-Singular (RS) analysis,
which became a key step in image checks. This method studies
small groups of pixels and compares how they react to simple
flips or changes. If these groups shift in a clear way, the image
may hold hidden data. RS analysis showed that even small
edits leave marks in local pixel patterns. These marks help
experts find steganography in images that still look normal to
the human eye. [?].

C. Paper 3

Pevny and Ker (2009) studied DCT-based steganalysis for
JPEG images and expanded the field with sharper tools. They
focused on how JPEG files store data in blocks and use DCT
steps to compress them. Their work showed that hidden data
can shift the usual pattern of DCT values. It also revealed that
changes in coefficient counts and quantization tables act as
clear signs of tampering. These findings helped build stronger
checks for JPEG images that may carry hidden data. [?].

D. Paper 4

Topkara et al. (2006) built stylometric and semantic models
to detect hidden text placed through word swaps or guided
synonym changes. Their work showed that small edits in
tone, word choice, and sentence flow leave clear signs in text
patterns. These signs help reveal when a message hides extra
data, even if the writing still appears natural to most readers.

[?].

E. Paper 5

Garcia et al. (2014) showed that EXIF metadata in images
can hold concealed text. They also built automated tools that
scan this metadata and extract hidden parts with high speed
and accuracy. Their work proved that simple metadata fields
can act as secret storage and that careful checks are needed in
forensic tasks. [?].

F. Paper 6

Xu et al. (2016) introduced a CNN-based detector that
pushed image checks forward. Their model learned small pixel
shifts that people cannot see. It picked up tiny noise changes
and local patterns linked to hidden data. This work showed
that deep models can spot signs that older hand-made features
often miss. [?].

G. Paper 7

Liu et al. (2023) proposed the use of Vision Transformers
for global pattern checks in complex images. They showed that
these models can scan the full image at once, track long-range
links, and catch shifts that local filters may miss. This global
view proved useful for steganalysis of GAN-made images,
which often hide data in smooth and wide patterns. Their study
showed that Vision Transformers pick up weak signals spread
across large areas, making them strong tools for modern image
checks. Their work highlighted how newer model designs can
raise accuracy in cases where hidden data blends into high-
quality, Al-generated content. [?].

H. Paper 8

Singh (2021) studied PDF layer structures and showed how
complex files can hide many kinds of data. He found that PDFs
can hold masked text, extra objects, and layered images that
stay unseen in normal view. His work explained how these
layers interact and how hidden parts can remain active even
when the file looks clean. This study helped show why PDF
checks must look beyond the visible page and review each
layer, tag, and object inside the file. [?].

1. Paper 9

Zhang (2022) showed that neural networks can learn to
embed hidden data directly into generated images. His work
explained how training steps guide the model to place secret
bits in smooth patterns that blend into the image. These
patterns stay hard to spot with simple tools. The study showed
that deep models can hide data with high skill, which makes
detection harder and raises new concerns for forensic checks.

[?].
J. Paper 10

Chen (2024) proposed a hybrid system that joins text
checks, image checks, and metadata review into one clear
process. He argued that hidden data often spreads across
different file types, and that single checks fail to catch these
links. His system compared language cues, pixel shifts, and
file tags to build a full picture of each case. It looked at
how text style changes, how images show small noise marks,
and how metadata fields shift in ways that do not match the
visible content. This wider view helped the system find hidden
data that moves between formats or sits in more than one
layer. Chen’s study showed strong gains in accuracy and gave
support for multi-step tools like the one proposed in this paper.

[?].

IV. METHODOLOGY

The proposed hidden-content detection framework is a multi-
layer system built to find concealed text and images in many
kinds of digital files. It does not depend on one method.
Instead, it joins statistical checks, metadata scans, language
models, image analysis tools, and document forensics in one
steady pipeline. Each layer adds a different view, which helps



the system catch more hidden data and avoid false hits. This
broad setup works for older tricks like LSB edits and newer
tricks made by Al tools. It gives a more stable and wide answer
to the problem of hidden content in modern files.

A. Data Sources and Feature Extraction

The method starts by building a strong set of digital files
that include both clean and altered content. The set holds
natural images, JPEG files with DCT edits, PNG files with
LSB changes, PDFs with hidden or masked text, Word files
with hidden objects, and text files that use zero-width marks
or swapped look-alike characters.

To handle these mixed file types, the system pulls out many
kinds of features. From images, it gathers pixel patterns, noise
marks, histogram shifts, and links between nearby pixels. It
also collects DCT gaps, wavelet signals, and odd changes in
quantization tables.

For text files, it gathers n-gram counts, style markers, mean-
ing checks, and sentence patterns that show slight changes.
For documents, it scans for extra layers, hidden objects, odd
metadata, old edits, and strange XML parts.

All these features prepare the full dataset for the next steps
in the analysis.

B. Hidden Content Detection Pipeline

The detection framework uses a staged pipeline, with each
part focused on one key area of hidden-content checks. The
pipeline mirrors how modern files are built in layers. It starts
with simple scans, such as metadata checks, and then moves
into deeper steps. Later stages use strong statistical tools and
machine-learning models. This setup helps the system catch
hidden parts at many levels, from surface tags to deep pixel
and text patterns.

1. Metadata and structure checks This stage looks at the
outer layers of each file. It reads EXIF tags in images and
checks if any fields hold hidden notes. It scans PDF files for
extra layers, masked text, or objects that do not appear on the
page. It also checks text files for odd Unicode marks, such as
zero-width spaces or look-alike characters that may hide data.
These steps help flag files that show early signs of hidden
content.

2. Statistical image checks This stage studies the raw pixel
data. It looks for shifts in histograms, changes in noise levels,
and patterns that point to hidden bits. It applies RS analysis
to test how pixel groups react to small flips. It also uses chi-
square checks to spot changes in pixel value counts. These
tests help find small signs left by simple or mid-level image
edits.

3. Machine-learning checks This stage uses strong models to
find deeper signs. A CNN scans each image for tiny pixel shifts
that people cannot see. An autoencoder rebuilds the image and
checks where the rebuild fails, which helps catch hidden parts.
A Transformer model studies the entire image at once to find
wide or smooth patterns linked to Al-based hiding. These tools
help detect complex tricks that older methods may miss.

4. Text checks This stage examines the writing itself. It
measures n-gram counts, meaning flow, and style markers to
find odd lines or strange word use. These checks help catch
hidden text that relies on word swaps, tone shifts, or small
marks in the writing. The goal is to spot text that looks normal
on the surface but hides extra bits.

Frame ID + 1

Detector

Fig. 1: Proposed Method Flowchart of Al-Driven Detection
and Tracking

V. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Environment

The system was tested on many files to check how well
it works. The image set had 4000 samples. Half were clean.
Half had data with LSB edits, parity tricks, DCT steps, DWT
steps, or deep Al methods. The text set had 500 clean samples
and 500 altered ones. The altered files used hidden marks, odd
Unicode signs, or small layer tricks. The document set had 300
PDFs with masked layers and 200 DOCX files with unseen
objects or hidden text.

Training took place on a workstation with an NVIDIA GPU
and 32 GB RAM. It used common tools like TensorFlow,
PyTorch, PyPDF2, python-docx, and EXIF readers. All parts
ran inside one pipeline that guided each file through every
stage.

B. Dataset Evaluation and Performance Metrics

The system showed strong results across many hiding
methods. For images, pixel and frequency checks reached
88-92Text checks reached about 90Metadata scans caught 80

False hits stayed low at 4-7GAN-made images were the
hardest to catch. Even the best vision models reached only
82-85This shows that deep hiding methods still need more
study and better tools.

C. System Performance and Observations

The layered pipeline worked better than single tools. Some
hiding tricks that slipped past stats checks were caught by



metadata scans. Some files that looked clean in structure
showed clear pixel shifts. Deep models helped find small signs
that older methods missed.

A key point was that mixing clues from metadata, image
patterns, and text features gave the best results. This shows
that hidden data often leaves small hints in many parts of a
file, not just in one place.

VI. CONCLUSION

This paper gave a detailed look at how to find hidden text
and images in modern digital files. It showed that strong
detection needs a mix of tools that work at many levels. These
include metadata scans, pixel checks, deep models, document
structure tests, and language checks. Each layer adds a new
view and helps reduce missed cases. The results showed that
older hiding tricks are caught with high accuracy. They also
showed that Al-made hiding is still hard to spot and needs
better tools and more training.

Future work should grow the file sets used in testing and
improve Transformer models used for global image checks.
It should also add adversarial training so the system can
handle new hiding tricks. Another key step is building fast
tools that can work on social apps and chat platforms without
delay. As online communication grows and Al-made hiding
becomes more common, strong detection systems will help
protect safety, trust, and clear sharing of information.



[1]

[2]

[3]
[4]

[5]

[6]

[9]
[10]

(11]

[12]

REFERENCES

J. Kodovsky and J. Fridrich, “Steganalysis of LSB Replacement Using
Parity Predictors,” IEEE Transactions on Information Forensics and
Security, vol. 7, no. 2, pp. 17-30, 2012

V. Holub, J. Fridrich, and T. Denemark, ‘“Universal Distortion Function
for Steganography in an Arbitrary Domain,” EURASIP Journal on
Information Security, vol. 2014, pp. 1-13, 2014.

A. Ker and R. Bohme, “Revisiting Weighted Stego-Image Steganalysis,”
Proc. SPIE: Electronic Imaging, 2008.

S. Li, Y. Shi, and H. Huang, “Text Steganalysis Using Linguistic Fea-
tures and Machine Learning Techniques,” Pattern Recognition Letters,
vol. 32, no. 14, pp. 1673-1681, 2011

S. Topkara, M. Topkara, and M. J. Atallah, “Words Are Not Enough:
Sentence-Level Linguistic Steganalysis,” Proc. IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), 2006.
B. Chen and G. W. Wornell, “Quantization Index Modulation: A Class
of Provably Good Methods for Digital Watermarking and Information
Embedding,” IEEE Transactions on Information Theory, vol. 47, no. 4,
pp. 1423-1443, 2001.

H. Farid, “Detection of Hidden Messages Using Higher-Order Statistical
Models,” Proc. International Conference on Image Processing (ICIP),
2002.

M. Salleh, S. Shanmugam, and M. A. Shanmugam, “A Review of JPEG
Steganalysis Techniques,” International Journal of Computer Applica-
tions, vol. 12, no. 7, pp. 24-35, 2010.

J. Hayes and G. Danezis, “Generating Steganographic Images via
Adversarial Training,” NeurIPS Workshop on Machine Deception, 2017.
H. Zhang, Y. Guo, L. Zhang, “Deep Learning-Based Image Steganalysis:
A Survey,” IEEE Access, vol. 7, pp. 172543-172566, 2019.

L. Wu, Z. Ji, and Y. Li, “Detecting Hidden Information in PDFs Using
Cross-Layer Structural Analysis,” Journal of Digital Forensics, Security
and Law, 2021.

R. Bohme, “Advanced Statistical Steganalysis Using Feature Selection,”
Proc. ACM Multimedia and Security Workshop, 2008.



