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Abstract:

Error-Control Coding (ECC) plays a fundamental role in ensuring reliable, secure, and energy-efficient communication in large-
scale IoT systems, where billions of low-power devices operate under noisy and rapidly changing channel conditions. Recent
research highlights major progress in several areas, including advanced Turbo and partially coupled codes that deliver ultra-high
reliability close to the Shannon capacity limit, and adaptive channel coding techniques that dynamically balance latency, throughput,
and energy efficiency in 5G and emerging 6G networks.

In parallel, ECC is increasingly combined with security and intelligence at the system level. Hybrid schemes such as Bose—
Chaudhuri-Hocquenghem BCH-Turbo codes enhance data robustness for mission-critical IoT applications, while integration with
cryptographic authentication, blockchain-based access control, and TinyML-driven inference improves data integrity, resilience,
and autonomous decision-making. Additionally, fault-tolerant and low-power hardware ECC architectures are being developed to
meet the strict resource constraints of IoT edge devices. Together, these developments underscore the importance of cross-layer
ECC integration as a key enabler for secure, scalable, and intelligent future 6G and edge-Al IoT ecosystems.
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Blockchain-Based Access Control; Tiny Machine Learning (TinyML); Energy-Efficient Communication; 5G and 6G Networks
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L INTRODUCTION constraints on latency, throughput, and reliability, thereby
necessitating adaptive and context-aware coding strategies.

Security considerations further compound these challenges, as
IoT networks routinely handle sensitive and mission-critical
data. Recent advances integrating ECC with lightweight

The rapid expansion of Internet of Things (IoT) deployments
across domains such as healthcare, industrial automation,
transportation, and smart-city infrastructure has intensified the

demand for highly reliable data transmission under stringent ¢ ryoiqoraphic primitives and blockchain-based decentralized
energy and environmental constraints. Many IoT devices  ,ccess-control mechanisms offer enhanced guarantees of data
operate over noisy and time-varying wireless channels while jnegrity, confidentiality, and traceability. Simultaneously, the
relying on sub-milliwatt power budgets, rendering traditional emergence of Tiny Machine Learning (TinyML) enables
retransmission-based reliability mechanisms inefficient or  microcontrollers to perform localized inference, facilitating
infeasible. Consequently, ECC has become a fundamental  context-aware error mitigation and anomaly detection directly at
enabler of robust communication in resource-constrained IoT  the network edge. This paper provides a comprehensive survey

environments. of contemporary ECC developments situated at the intersection
Although classical coding schemes—such as Hamming, Reed—  of communication theory, embedded hardware design, and
Solomon, and Convolutional codes—provide essential error-  emerging decentralized intelligence.

correction capabilities, their fixed redundancy and limited I. FUNDAMENTALSOF ERROR CONTROL CODING

adap tability are increasingly. inadeqpate for Fhe diverse and ECC is a key technique used in digital communication systems
dynamic requirements associated with emerging 5G and 6G to improve transmission reliability by introducing structured

communication  p aradlgms. Modern  traffic categories, redundancy into the transmitted data. During wireless
including enhanced Mobile Broadband (eMBB), ultra-reliable .. . . .
L . . transmission, signals are affected by channel impairments such
low-latency communication (URLLC), and massive Machine- L. . . .
T C cati MTO). i het. as noise, interference, and multipath fading, which can lead to
ype Communication  (m ), impose  heterogencous random and burst errors at the receiver. ECC enables the

receiver to detect and correct these errors without requiring
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retransmission, thereby reducing latency and conserving
energy. This property is particularly important in Internet of
Things (IoT) applications, where devices often operate with
limited power resources and under strict delay constraints. The
overall performance of an ECC scheme depends on several
factors, including the code rate, decoding complexity, latency,
and energy efficiency, all of which must be carefully optimized
to suit the target application [1].
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Fig. 1. BCH Encoder Block Diagram [2]

The BCH encoder introduces algebraic redundancy to enable
multiple-bit error correction, making it suitable for short-packet
IoT transmissions with strict reliability requirements as shown
in figl [2]. Block codes form one of the fundamental classes of
ECC techniques and operate by encoding fixed-length blocks
of information bits into longer codewords using algebraic
methods. The added redundancy allows the receiver to identify
and correct errors based on the mathematical structure of the
code. Among block codes, Bose—Chaudhuri-Hocquenghem
(BCH) codes are widely adopted in IoT and embedded systems
due to their ability to correct multiple random bit errors with
relatively moderate computational complexity. Their
deterministic correction capability and effectiveness for short
data packets make BCH codes well suited for sensor data
transmission, control signalling, and memory protection in IoT
devices [2]. Convolutional codes differ from block codes in that
they process continuous streams of data rather than fixed-size
blocks. The encoding process uses shift registers and generator
polynomials to produce parity bits that depend on both current
and previous input bits, providing robust protection for
streaming data. Decoding is typically performed using the
Viterbi algorithm, which searches the trellis representation of
the code to determine the most likely transmitted sequence.
This optimal maximum-likelihood decoding approach,
combined with low decoding latency, makes convolutional
codes particularly suitable for real-time telemetry and control
applications in IoT networks [3].

Turbo codes represent a major breakthrough in coding theory
by demonstrating error-correction performance close to the
theoretical Shannon capacity limit. This is achieved through the
parallel concatenation of convolutional encoders and iterative
decoding, where soft information is exchanged between
component decoders to progressively improve bit reliability
estimates. Building on these advances, LDPC codes further
enhance performance using sparse parity-check matrices and
iterative belief-propagation decoding, enabling highly parallel
and energy-efficient implementations. Polar codes, based on the
principle of channel polarization, are capacity-achieving codes
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and have been adopted in 5G New Radio control channels due
to their strong theoretical foundation and reliable performance
in modern wireless systems [4].

LDPC codes further enhance error-correction performance by
employing sparse parity-check matrices combined with
iterative  belief-propagation  decoding. The  defining
characteristic of LDPC codes is the sparsity of their parity-
check matrices, which significantly reduces decoding
complexity and enables highly parallel processing. This
parallelism makes LDPC codes particularly attractive for
hardware implementations that require high throughput and low
energy consumption, such as base stations, gateways, and
advanced IoT edge devices. Moreover, LDPC codes exhibit
strong error-correction capability across a wide range of block
lengths and code rates, allowing them to be flexibly adapted to
diverse channel conditions and application requirements. As a
result, LDPC codes have been widely adopted in modern
communication  standards, including Wi-Fi, satellite
communications, and 4G/5G wireless systems [5].

Polar codes represent another major advancement in coding
theory through the concept of channel polarization, which
transforms a set of identical communication channels into a
combination of highly reliable and highly unreliable
subchannels. By transmitting information bits only over the
reliable subchannels and assigning fixed values to the
unreliable ones, Polar codes can theoretically achieve channel
capacity with provable optimality. Their structured
construction enables efficient encoding and decoding using
successive cancellation and its enhanced variants, making them
suitable for practical implementation. Owing to their strong
theoretical foundation, low encoding complexity, and reliable
performance for short and moderate block lengths, Polar codes
have been adopted in 5G New Radio control channels. This
adoption underscores their growing importance in next-
generation wireless and IoT communication systems that
demand high reliability, low latency, and efficient use of
spectral resources [6].

III. TURBO CODES FOR RELIABLE 10T
COMMUNICATION
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Fig. 2. Turbo Encoder and Iterative Decoder Architecture [7]

Turbo codes achieve significant coding gains at low signal-to-
noise ratios, which is critical for energy-constrained IoT
devices operating in noisy wireless environments as shown in
fig.2. [7]. Turbo codes are widely recognized for their
exceptional error-correction capability, particularly in low
signal-to-noise ratio (SNR) conditions where conventional
coding schemes tend to fail. Their ability to operate reliably
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near the Shannon capacity limit makes them especially
attractive for IoT environments, which are often characterized
by noisy channels, limited transmission power, and intermittent
connectivity. IoT devices deployed in remote or harsh
environments benefit significantly from coding schemes that
can maintain reliable communication without frequent
retransmissions. The robustness of Turbo codes under such
adverse channel conditions has made them a preferred choice
for reliability-critical wireless communication systems [7].
A typical turbo encoder is constructed using two recursive
systematic convolutional encoders connected in parallel and
separated by an interleaver. The interleaver plays a crucial role
by rearranging the input bit sequence in a pseudo-random
manner, thereby spreading burst errors over multiple code
blocks.

x(t) = [u(t), p1(8), p2(D)], ()
where p;(t)and p,(t)arise from the direct and interleaved
branches. At the receiver, two soft-input soft-output decoders
iteratively exchange extrinsic information using BCJR, Log-
MAP, or Max-Log-MAP algorithms until convergence or a set
iteration limit.
This randomization improves the effectiveness of iterative
decoding at the receiver and enhances overall error-correction
performance. The parallel concatenation structure enables
Turbo codes to exploit both time diversity and coding gain,
which is particularly beneficial for short-packet transmissions
common in [oT applications.
At the receiver, Turbo decoding is performed using an iterative
process based on soft-input soft-output (SISO) algorithms.
Instead of making hard decisions on received bits, the decoder
processes probabilistic information in the form of likelihood
values. Algorithms such as BCJR, Log-MAP, and Max-Log-
MAP iteratively exchange extrinsic information between
component decoders, refining bit reliability estimates with each
iteration. This iterative exchange gradually reduces uncertainty
in the decoded sequence and leads to significant improvements
in bit error rate (BER) performance, especially in low-SNR
regimes [8].
Recent research efforts have focused on enhancing the practical
performance of Turbo codes by addressing inherent limitations
such as error floors, decoding complexity, and reduced
efficiency for short block lengths. In conventional Turbo codes,
the presence of low-weight codewords and suboptimal
interleaver designs can lead to performance saturation at high
signal-to-noise ratio (SNR) values, resulting in an error floor
that limits achievable reliability. This issue is particularly
critical in Internet of Things (IoT) applications, where high
reliability is required even for short packets transmitted under
stringent power and latency constraints.
To overcome these challenges, turbo-like and partially coupled
turbo codes have been proposed as advanced coding structures
that improve the minimum distance properties of Turbo codes.
By introducing spatial or partial coupling between component
encoders, these schemes enhance the exchange of extrinsic
information during iterative decoding and promote faster
convergence toward correct decisions. As a result, the
probability of residual errors at high SNR values is significantly
reduced, and decoding robustness is improved for short block
lengths commonly used in IoT communication. These
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enhancements make advanced Turbo coding schemes well
suited for reliable, low-latency, and energy-efficient IoT
systems [9].
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Fig. 3. BER versus SNR Performance Comparison of BCH, Turbo, and LDPC
CODES [9].

Turbo and LDPC codes significantly outperform classical BCH
codes in the low-SNR regime, demonstrating near-capacity
performance through iterative decoding as shown in fig. 3 [9].
In addition to structural improvements, hybrid coding schemes
that combine Turbo codes with algebraic codes such as BCH
have gained considerable attention. Hybrid BCH-Turbo coding
schemes leverage the strong burst-error correction capability of
Turbo codes along with the deterministic and guaranteed
correction capability of BCH codes. This combination
significantly reduces the number of retransmissions, improves
fault tolerance, and enhances overall system reliability. Such
hybrid approaches are particularly beneficial for mission-
critical IoT applications, including industrial automation,
healthcare monitoring, and smart infrastructure, where data
integrity and reliability are of paramount importance [10].

IV. ADAPTIVE CHANNEL CODING FOR5G ANDIOT
NETWORKS
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Fig. 4. Adaptive Channel Coding Loop Using CQI Feedback [11]

Adaptive Channel Coding dynamically adjusts the coding rate
based on channel quality indicators to balance reliability and
energy efficiency as shown in fig. 4. [11]. ACC enables
communication systems to dynamically adjust coding
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parameters in response to variations in wireless channel
conditions. In IoT environments, channel quality can fluctuate
significantly due to factors such as node mobility, interference
from neighbouring devices, and multipath fading. These
variations directly affect link reliability and can lead to
increased packet errors if fixed-rate coding schemes are used.
ACC enhances system robustness by adapting the level of
redundancy based on real-time channel assessments, thereby
maintaining  reliable communication while reducing
unnecessary retransmissions. This adaptive behaviour is
particularly beneficial for energy-constrained IoT devices, as it
balances reliability with power efficiency and helps sustain
acceptable quality of service over time. Channel quality metrics
such as signal-to-noise ratio (SNR) estimates or Channel
Quality Indicator (CQI) feedback from the receiver are
commonly used to guide these adaptive decisions [11].
Early ACC schemes primarily relied on punctured
convolutional codes to provide variable code rates by
selectively removing parity bits from a low-rate mother code.
Although this method enabled basic rate adaptation, its coarse
granularity and limited flexibility made it less effective in
rapidly changing channel conditions. To overcome these
shortcomings, modern communication systems have adopted
rate-compatible Turbo and LDPC codes, which allow fine-
grained adjustment of redundancy while preserving a common
encoder—decoder structure. This seamless rate adaptation
simplifies implementation, reduces signalling overhead, and
enables efficient operation across a wide range of channel
scenarios encountered in contemporary wireless and IoT
networks [12]. Early ACC strategies employed punctured
convolutional codes to realize multiple effective rates (e.g., 1/2,
2/3, 3/4). Modern 5G systems utilize rate-compatible Turbo and
LDPC code families (RCPT and RC-LDPC), allowing smooth
adjustment of redundancy without modifying decoder structure.
The achievable throughput is commonly expressed as

T = R log ,(1 + SNR), 2)
where R_denotes the coding rate. Maximizing Twhile satisfying
BER and latency requirements defines the adaptation objective.
Hybrid coding designs have been proposed to address the short-
packet and burst-mode characteristics of many IoT
applications. Polar—Convolutional concatenated codes, for
example, have demonstrated up to 10 dB coding gain at BER
107%in UFMC-based 5G systems, offering substantial
robustness compared with standalone Polar code.
ACM extends conventional channel adaptation techniques by
jointly optimizing both the modulation order and the channel
coding rate according to instantaneous channel conditions.
Unlike schemes that adapt only the coding rate, ACM exploits
the combined degrees of freedom offered by modulation and
coding to improve spectral efficiency and link reliability. In
favourable channel conditions, the system selects higher-order
modulation schemes together with weaker error-correction
coding to maximize throughput and efficiently utilize available
bandwidth. Conversely, under poor channel conditions caused
by fading, interference, or mobility, lower-order modulation
combined with stronger coding is employed to ensure reliable
data transmission and maintain acceptable error performance.
This joint optimization enables the system to satisfy predefined
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bit error rate and latency constraints while adapting smoothly
to rapidly changing wireless environments, making ACM
particularly effective in time-varying and frequency-selective
channels commonly encountered in IoT and mobile
communication systems [13].

In recent years, machine-learning-based techniques have
emerged as a powerful alternative to traditional rule-based
adaptation strategies. Conventional ACC schemes typically
rely on predefined thresholds and analytical models that may
not accurately capture the complexity and uncertainty of real-
world wireless channels. Machine-learning approaches,
particularly reinforcement learning, allow the communication
system to autonomously learn optimal adaptation policies by
continuously interacting with the environment. By observing
historical channel conditions, decoding success rates, traffic
characteristics, and energy consumption patterns, learning
agents can make informed coding decisions that optimize long-
term system performance. These data-driven techniques are
capable of handling non-linear channel behaviour and
unforeseen operating conditions more effectively than static
adaptation rules. As a result, machine-learning-based ACC
methods improve adaptation accuracy, enhance reliability, and
reduce energy consumption, making them well suited for large-
scale, autonomous, and energy-constrained [oT networks [14].

V. SECURITY, ADAPTIVITY, AND SCALABILITY
IN IOT COMMUNICATION

Although ECC significantly improves communication
reliability by mitigating channel-induced errors, it does not
inherently address security threats that arise at the protocol or
application layers. IoT systems typically operate over open and
shared wireless media, where transmitted data can be easily
intercepted or manipulated by malicious entities. As IoT
devices are often deployed in unattended or hostile
environments, they are especially vulnerable to attacks such as
spoofing, replay attacks, impersonation, and unauthorized
access. These security challenges are further aggravated by the
limited computational capability, memory, and battery life of
IoT nodes, which restrict the use of conventional heavyweight
cryptographic algorithms. Consequently, relying solely on
encryption-based security mechanisms may not be feasible for
many [oT applications. To address this gap, researchers have
emphasized the integration of ECC with lightweight
authentication and integrity verification techniques that can
offer basic security assurances while maintaining low
complexity and energy consumption. Such integrated
approaches allow IoT systems to achieve simultaneous
protection against both transmission errors and malicious data
manipulation, thereby enhancing the overall trustworthiness
and resilience of IoT communication frameworks [15].

Blockchain-based access control frameworks have emerged as
a promising approach to further strengthen security and trust in
large-scale IoT deployments. Traditional centralized access
control systems suffer from single points of failure, limited
scalability, and vulnerability to targeted attacks. In contrast,
blockchain employs a decentralized ledger architecture that
distributes trust across multiple participating nodes, eliminating
dependence on a central authority. The immutability of
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blockchain records ensures that access transactions cannot be
altered or repudiated, providing transparent and verifiable audit
trails. Additionally, distributed identity management and smart
contracts enable automated enforcement of access policies,
allowing only authenticated and authorized entities to interact
with IoT devices and services. When combined with ECC-
protected data transmission, blockchain-based access control
enhances both communication reliability and security, resulting
in a robust end-to-end framework suitable for heterogeneous,
distributed, and large-scale IoT environments [16].

Beyond physical and link layers, secure and scalable
communication increasingly relies on decentralized trust
mechanisms. Blockchain-based access control, discussed
further in Section VII, complements ECC by providing
immutable auditability and distributed identity management
across edge, fog, and cloud layers. Together, these approaches
form a unified security—reliability framework suitable for next-
generation [oT ecosystems. In addition to security challenges,
scalability remains a critical concern in dense IoT deployments
that involve hundreds or even thousands of devices sharing
limited wireless resources. As the number of connected nodes
increases, the wireless medium becomes highly congested,
leading to increased contention for channel access, frequent
packet collisions, and elevated levels of interference. These
effects can significantly degrade network throughput, increase
latency, and reduce overall reliability, particularly in large-scale
IoT applications such as smart cities, industrial automation, and
environmental monitoring. Without appropriate adaptation
mechanisms, fixed-rate coding and static access strategies are
often unable to cope with such dynamic and crowded network
conditions.

To address these scalability challenges, cross-layer
optimization approaches have gained considerable attention in
recent research. These approaches coordinate ECC at the
physical layer with Medium Access Control (MAC) layer
protocols, enabling joint adaptation to both channel conditions
and network load. By dynamically adjusting coding redundancy
in response to factors such as traffic intensity, collision
probability, and contention levels, cross-layer designs can
significantly improve packet delivery success rates and mitigate
throughput degradation in congested scenarios. Such
coordinated strategies highlight the importance of jointly
considering reliability, security, and scalability to ensure the
sustainable and efficient operation of large-scale IoT networks
[17].

VI. FAULT-TOLERANT AND LOW-POWERECC
ARCHITECTURES

Fault-tolerant ECC hardware is essential for maintaining
reliability in IoT deployments, where microcontrollers and
memories are frequently exposed to radiation-induced upsets
and transient faults. Hardware-level multi-bit error correction
has proven effective: Mahadevaswamy et al. Demonstrated a
BCH-coded 32-bit ALU on a Spartan-3 FPGA using a shortened
(63, 36) BCH code capable of correcting up to five-bit errors.
The design incurred roughly 70% hardware overhead—
substantially lower than the >200% overhead associated with
Triple Modular Redundancy—while achieving complete
recovery from injected bit-flip faults, confirming BCH as a
lightweight protection mechanism for embedded systems. In
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advanced memory technologies, where CMOS-nanodevice
hybrids exhibit high defect rates, ECC also plays a key role in
defect management. Kavitha et al. Introduced a group-based
BCH protection scheme in which multiple memory regions
share Galois-field hardware and apply codes of differing
strength. Coupled with adaptive logical-to-physical remapping,
this approach mitigates permanent and transient faults while
preserving storage capacity, illustrating how ECC can function
as an active fault-management tool rather than solely as a data-
integrity safeguard.

IoT devices are increasingly deployed in harsh and
unpredictable environments such as industrial plants, space
systems, outdoor sensing fields, and high-radiation zones. In
such conditions, hardware components are exposed to factors
including radiation, temperature fluctuations, and aging effects,
which can induce transient faults such as single-event upsets
and permanent hardware failures. These faults often manifest as
bit flips in memory elements, registers, or processing units,
leading to corrupted data and unreliable system behaviour.
Ensuring fault tolerance under these constraints is critical,
especially for safety-critical and mission-critical IoT
applications where data integrity and continuous operation are
essential.

16-bit Residue

32-bit Data Registers

Registers

A __J
3 3 16 16
;V Y

\ /

»\ DataALU  /— Y Y
\ / Residue
— ALU

PR A %\

Encoder & Checker

Residue Register

Contol
Unit

Fig.5. BCH-Based Fault-Tolerant ALU Architecture [18]

BCH codes provide effective protection against transient and
permanent hardware faults with significantly lower overhead
than redundancy-based techniques as shown in fig.5 [18].

To address these challenges, BCH-based fault-tolerant
architectures have been widely adopted due to their ability to
correct multiple random bit errors with relatively low hardware
complexity. Unlike redundancy-based approaches such as
Triple Modular Redundancy (TMR), which replicate hardware
modules and rely on majority voting, BCH-based solutions
provide error correction through coding techniques that
introduce minimal additional logic and power overhead. This
makes them particularly suitable for resource-constrained IoT
devices, where silicon area, power consumption, and cost are
critical design considerations. By offering strong error-
correction capability without excessive duplication of hardware
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resources, BCH-based architectures provide an efficient and
scalable approach to fault tolerance in harsh operating
environments [18]. In parallel with fault tolerance, energy
efficiency remains a primary design objective for ECC
implementations in IoT systems. Decoding operations can be
computationally intensive, especially for advanced coding
schemes, and may significantly impact battery life if not
carefully optimized. As a result, energy-efficient ECC
architectures focus on reducing decoding complexity through
techniques such as clock gating, which disables inactive circuit
blocks, approximate arithmetic that lowers computational
precision without significantly affecting decoding accuracy,
and early termination strategies that halt decoding iterations
once convergence is achieved.

Low-power Turbo decoder designs exemplify these
optimization  strategies by  combining  algorithmic
simplifications with hardware-level power-saving techniques.
Such designs significantly reduce energy consumption while
preserving high decoding throughput and acceptable error-rate
performance. These characteristics make low-power Turbo
decoders well suited for Narrowband IoT (NB-IoT) and
wireless sensor network applications, where long device
lifetime and reliable communication are paramount. The
demonstrated efficiency of these architectures highlights the
importance of co-designing ECC algorithms and hardware to
meet the stringent power and performance requirements of
modern IoT systems [19].

Ultimately, IoT system design must negotiate the trade-off
between correction capability and energy consumption.
Techniques such as adaptive voltage scaling and early-
termination decoding can reduce energy usage by up to 25%
under favorable channel conditions. Furthermore, emerging
error-resilient architectures tolerate residual BER on the order
of 10~°by relying on application-level masking and graceful
degradation, thereby extending device lifetime without
compromising functional reliability.

VII. EMERGING TECHNOLOGIES FOR INTELLIGENT
IOT RELIABILITY

TinyML represents an important advancement in embedded
intelligence by enabling neural network inference directly on
ultra-low-power microcontrollers with strict constraints on
memory, computation, and energy consumption. Unlike
conventional machine-learning approaches that rely on cloud or
edge servers, TinyML allows intelligent decision-making to
occur locally at the device level. This on-device processing
significantly reduces communication latency, minimizes
bandwidth usage, and enhances data privacy—factors that are
critical for large-scale IoT systems operating in remote,
bandwidth-limited, or delay-sensitive environments. In
wireless communication scenarios, TinyML models can be
trained to analyse locally observed signal characteristics such
as received signal strength, noise variance, packet error rates,
and historical decoding outcomes. By learning temporal and
spatial patterns in these parameters, TinyML-enabled devices
can accurately predict channel quality variations and
proactively adapt ECC parameters, such as coding rate,
decoding iterations, or redundancy level. This real-time,
autonomous adaptation improves communication reliability
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and energy efficiency without continuous reliance on cloud
connectivity, making TinyML particularly suitable for self-
sustaining and scalable IoT deployments [20].
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Fig. 6. TinyML-Based On-Device Intelligence for Adaptive ECC [20]

TinyML enables real-time channel prediction and ECC
adaptation on ultra-low-power microcontrollers, reducing
latency and energy consumption as shown in fig.6 [20]. Soft-
decision decoding techniques further enhance ECC
performance by exploiting the probabilistic information
inherently present in received signals. In practical wireless
channels, received symbols carry not only binary decisions but
also reliability information that reflects confidence levels
associated with each bit. Hard-decision decoding discards this
valuable information by converting received signals into binary
values before decoding, which can lead to suboptimal
performance. In contrast, soft-decision decoding incorporates
likelihood or log-likelihood values into the decoding process,
enabling more accurate error correction. Algorithms such as
soft-bit Viterbi decoding and Maximum a Posteriori (MAP)
decoding evaluate multiple candidate paths or codewords based
on probabilistic metrics, allowing the decoder to make informed
decisions even under severe noise and fading conditions.
Although  soft-decision  decoding introduces  higher
computational ~ complexity, advances in algorithmic
optimization and low-power hardware design have made these
techniques feasible for resource-constrained IoT devices. The
resulting signal-to-noise ratio gains translate into improved
reliability or reduced transmission power requirements, making
soft-decision decoding an effective and practical solution for
modern IoT communication systems seamlessly orchestrating
these diverse layers without excessive overhead. Future IoT
chipsets will likely feature built-in ECC engines, hardware
neural accelerators, and lightweight cryptographic cores
integrated into a unified SoC.

CONCLUSION

ECC has evolved well beyond its traditional role as a physical-
layer error mitigation technique and has emerged as a critical
cross-layer component in modern Internet of Things (IoT)
communication systems. As IoT networks continue to scale in
size, heterogeneity, and application diversity, the limitations of
fixed-rate and isolated reliability mechanisms have become
increasingly evident. Advanced coding schemes such as Turbo,
LDPC, and Polar codes provide near-capacity performance and
robust error correction under challenging channel conditions,
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forming the foundation for reliable low-power wireless
communication.

The integration of adaptive channel coding and adaptive coded
modulation enables IoT systems to dynamically respond to
time-varying channel conditions and network congestion,
achieving an optimal balance between reliability, spectral
efficiency, and energy consumption. Fault-tolerant ECC
architectures, particularly those based on algebraic codes such
as BCH, further enhance system robustness by protecting IoT
devices against hardware-induced errors and environmental
disturbances without incurring excessive overhead. At the same
time, cross-layer optimization approaches that coordinate ECC
with medium access control and higher-layer protocols address
scalability challenges in dense IoT deployments.

Emerging technologies are further transforming the role of ECC
in next-generation IoT networks. Blockchain-based access
control frameworks complement ECC by introducing
decentralized trust, secure identity management, and immutable
audit trails, thereby strengthening end-to-end security.
Similarly, on-device intelligence that supports real-time
prediction of channel conditions and autonomous adaptation of
ECC parameters, reducing latency and dependence on cloud
resources. Together, these advancements highlight a paradigm
shift toward intelligent, adaptive, and secure communication
architectures. Looking ahead, continued research in Al-assisted
ECC design, hardware—software co-optimization, and energy-
aware implementations will be essential to meet the stringent
requirements of future IoT systems. As IoT applications expand
into mission-critical domains such as smart healthcare,
industrial automation, and autonomous infrastructure, the
convergence of advanced coding theory, machine intelligence,
and system-level optimization will play a pivotal role in
realizing scalable, sustainable, and resilient next-generation IoT
networks.
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