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Abstract:  

In navigation and target tracking control systems, accurate angular tracking is a crucial requirement to 

ensure system stability and precision. However, measurement noise significantly degrades signal quality and 

impacts target tracking capabilities. This paper presents a simulation model of an angle tracking system 

using a discrete Kalman filter, built upon the differential equations of an electromechanical rotating system. 

The novelty of this study lies in evaluating the impact of three characteristic kinematic parameters moment 

of inertia, damping coefficient, and stiffness on filtering performance and tracking error. By calculating and 

visualizing RMSE, velocity error, and angular error over time, this study clarifies the design parameters’ 

role in improving angle signal filtering quality. The simulation results are visualized and serve as a 

reference for selecting optimal parameter configurations in real-world tracking systems under noise 

conditions. 
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I. INTRODUCTION 

In observation, navigation, or fire control 

systems, tracking the angular motion of a target is 

essential and directly affects the system's accuracy 

and combat effectiveness. In real-world conditions, 

sensor measurements are often corrupted by noise, 

resulting in significant deviations in measured 

angles from the true values. Kalman filters are 

widely used to address this issue due to their ability 

to combine system models with measured signals 

for better state estimation. Additionally, the 

dynamics of angle tracking systems depend on 

design-specific parameters such as the moment of 

inertia, damping coefficient, and stiffness. 

However, the impact of these parameters on 

filtering quality under stochastic noise conditions 

remains underexplored. This paper focuses on 

simulating an angle tracking system with integrated 

Kalman filtering using three different sets of 

kinematic parameters and evaluates filtering 

performance through standard error indices. This is 

a crucial step toward determining optimal system 

configurations for noisy environments. 

II. ALGORITHM SYNTHESIS AND SYSTEM 

MODELING 

This section presents the theoretical foundation 

of the angle tracking model and the discrete Kalman 

filter algorithm used in the simulation program. The 

equations are developed based on the kinematics of 

a rotating servo system and then discretized for 

numerical implementation. 

The angle tracking system is commonly modeled 

as an electromechanical rotational system 

influenced by control and resistive torques. The 

rotational motion equation is: 

2
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dtdt

θ θ
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Where: 

( )tθ - Actual rotation angle of the tracking 

system [deg]; 

( )c tθ - Command angle [deg]; 

J - Moment of inertia of the tracker [kg.m2]; 

D - Rotational damping coefficient [N.m.s/deg]; 
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K - Torsional stiffness coefficient [N.m/deg]. 

Equation (1) can be normalized to: 
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θ θ
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To apply the Kalman filter, the system must be 

expressed in state-space form. Let: 
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Then the state-space equation becomes: 

( ) ( ) ( ), ( ) ( )x t Ax t Bu t y t Cx t= + =&         (4) 

Where: 

( ) ( )cu t tθ= - Input to the angle tracking system 

[deg]; 

( ) ( )y t tθ= - Output of the angle tracking 

system [deg]. 

The matrices are defined as:  

0 1 0
, , 1 0A B CK D K

J J J
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       (5) 

Since the simulation runs on a computer, the 

system is discretized using a time step T  [s]. Using 

the Euler method: 

( 1) ( ) . ( )

. , .
d d

x k x k T x k
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&
         (6) 

Where: 

d
A - Discrete state matrix; 

d
B - Discrete control matrix. 

The discrete noisy system is represented by the 

Kalman filter model: 

1
,

k k k k k k k
x Ax Bu z Cxω υ

+
= + + = +         (7) 

Where: 

k
x - True state at time step k; 

k
z  - Noisy measurement [deg]; 

(0, )
k

Qω Ν - Process noise [deg2]; 

(0, )
k

Rυ Ν - Measurement noise [deg2]; 

Q  - Process noise covariance matrix, typically     

small; 

R - Measurement noise covariance matrix, 

defined by sensor. 

Kalman Filter Algorithm Steps: 

Step 1: State Prediction 

/ 1 1
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ˆ ˆ
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T
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          (8) 

Where: 

/ 1
ˆ
k k

x
−

- Predicted state (prior to update); 

/ 1k k
P

−
 - Predicted error covariance [deg2]. 

Step 2: Kalman Gain Calculation 

1
/ 1 / 1

T T
k k k k k

K P C CP C R−

− −
= +          (9) 

k
K - Kalman gain determines the weight 

between model prediction and actual measurement. 

Step 3: State and Covariance Update 

/ 1 / 1

/ 1
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Here, the state is corrected based on the 

difference between the actual and predicted 

measurement. After filtering, results are evaluated 

using: 

Root Mean Square Error (RMSE): 

2
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Bias (Mean Error): 
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Standard Deviation of Error: 

2
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III. SIMULATION AND EVALUATION 

To assess the effectiveness of the Kalman filter 

in angle tracking systems and examine how 

kinematic parameters (inertia J, damping D, 

stiffness K) influence filtering error, the authors 

built a simulation with three representative 

parameter sets reflecting different dynamic 

characteristics of electromechanical systems. The 

input signal is a time-varying step function, and 

Gaussian noise is added to simulate real-world 

conditions. Comparing RMSE, bias, and standard 

deviation in each case allows for quantitative 

evaluation of Kalman filter performance with each 

parameter set. 

- Set 1: J = 0.01 (kg.m²), D = 0.05 (N.m.s/deg), 

K = 1.0 (N.m/deg); 

- Set 2: J = 0.02 (kg.m²), D = 0.10 (N.m.s/deg), 

K = 0.8 (N.m/deg); 

- Set 3: J = 0.015 (kg.m²), D = 0.08 (N.m.s/deg), 

K = 0.9 (N.m/deg). 

Gaussian measurement noise with a standard 

deviation of σ = 0.5 (deg) is added. The discrete 

Kalman filter is implemented with Q = 0.001.I and 

R = σ². The simulation results are as follows: 

 

Figure 1. Kalman filter output compared to true 

angle and noisy measurement 

Figure 1 illustrates the angular tracking 

performance of the system under Gaussian 

measurement noise conditions. The black line 

denotes the true target angle, while the red dotted 

line represents the measured signal corrupted by 

noise (standard deviation σ = 0.5 (deg)). After 

applying the discrete Kalman filter with three 

different sets of dynamic parameters, all filtered 

outputs closely track the true angle. Parameter Set 1 

yields the fastest response but exhibits slight 

overshoot and oscillations near the switching times 

at 5 and 10 seconds. Parameter Set 2 responds more 

slowly, effectively reducing oscillations but 

introducing noticeable delay during transients. 

Parameter Set 3 achieves a balanced trade-off 

between tracking accuracy and response 

smoothness. These results highlight the critical 

influence of dynamic parameters on filtering 

performance and transient characteristics. 

 

Figure 2. Kalman filter output compared to true 

angular rate and noisy measurement 

Figure 2 illustrates the angular rate response of 

the system, including the true angular velocity, the 

noisy measured rate obtained from differentiated 

angle measurements, and the Kalman filter 

estimates for three different parameter 

configurations. As expected, the measured angular 

rate exhibits significant high-frequency noise due to 

the differentiation of noisy angle measurements, 

leading to large amplitude fluctuations that do not 

reflect the true system dynamics. In contrast, the 

Kalman filter effectively suppresses measurement 
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noise while preserving the transient and steady-state 

characteristics of the angular rate. The estimated 

angular rates closely follow the true response during 

both transient events and steady-state intervals, 

demonstrating the robustness of the Kalman filter 

against measurement noise and parameter 

variations. Minor discrepancies between the 

estimates are observed during rapid transients, 

which can be attributed to differences in inertia, 

damping, and stiffness parameters. Overall, the 

results confirm the effectiveness of the Kalman 

filtering approach in reconstructing angular velocity 

from noisy angle measurements. 

 

Figure 3. Angular error and angular velocity 

error for each parameter set 

Figure 3 shows the estimation errors in angle 

(top plot) and angular velocity (bottom plot) across 

the three parameter configurations. The angular 

error generally remains within ±0.1 (deg), and the 

low RMSE values indicate the effectiveness of the 

Kalman filter in angle estimation. Specifically, 

Parameter Set 1 yields an RMSE of 0.0541 (deg), 

Set 2 results in 0.0605 (deg), and Set 3 achieves 

0.0549 (deg), suggesting minimal angular 

estimation error and weak dependence on system 

inertia. However, velocity error reveals more 

significant differences: Set 1 exhibits the largest 

error (RMSE = 0.5098deg/s) due to its faster and 

more oscillatory response; Set 2 achieves the 

smallest error (RMSE = 0.3369deg/s), benefiting 

from higher inertia and damping; while Set 3 

provides intermediate performance (RMSE = 

0.3951deg/s). These results demonstrate that 

appropriate selection of system dynamics can 

balance between positional accuracy and 

responsiveness in angular tracking systems. 

 

Figure 4. RMSE, bias, and standard deviation 

over time 

Figure 4 presents the temporal evolution of 

estimation errors using a sliding window of 50 

samples. The top graph shows the dynamic RMSE, 

where Parameter Set 2 tends to have higher values, 

particularly near the step transitions at 5 and 10 

seconds indicative of slower adaptation due to 

greater inertia. The middle graph shows the bias 

remaining close to zero for all configurations, 

ensuring unbiased estimates; however, Set 2 

exhibits a noticeable positive bias in the 4–6 second 

interval. The bottom graph displays the standard 
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deviation of estimation error: Sets 1 and 3 remain 

within the 0.03–0.07 (deg) range, while Set 2 peaks 

at approximately 0.09 (deg), indicating that reduced 

oscillation in the response does not necessarily 

equate to lower residual noise. These findings 

emphasize the need for time-resolved error analysis 

to select optimal dynamic parameters tailored to 

different operating phases of the tracking system. 

 

Figure 5. Correlation between true angle and 

Kalman filter estimated angle for different 

system parameter sets 

Figure 5 illustrates the correlation between the 

true angle and the angle estimated by the Kalman 

filter for three different system parameter sets. In all 

cases, the data points are tightly clustered along the 

fitted linear regression line with a slope close to 

unity, indicating high estimation accuracy and 

negligible bias.  

For the case with smaller inertia (J = 0.010) and 

higher stiffness (K = 1.00), the estimator maintains 

excellent linearity, demonstrating the ability of the 

Kalman filter to accurately track rapid system 

dynamics. When the inertia and damping are 

increased (J = 0.020, D = 0.10), the slope of the 

regression line remains close to one, reflecting the 

robustness and stability of the filter under parameter 

variations. The intermediate parameter set (J = 

0.015, D = 0.08, K = 0.90) exhibits similar 

behavior, further confirming that the Kalman filter 

performance is weakly sensitive to changes in 

system parameters within the considered range. 

Overall, these results demonstrate that the Kalman 

filter provides reliable and nearly unbiased angle 

estimates across different system configurations. 

IV. CONCLUSION 

This paper has presented a comprehensive 

simulation-based analysis of a Kalman-filtered 

angular tracking system, with particular emphasis 

on the influence of kinematic parameters, including 

moment of inertia, damping coefficient, and 

stiffness, on filtering performance under noisy 

measurement conditions. Through the evaluation of 

angle response, angular rate estimation, tracking 

errors, dynamic RMSE, and correlation 

characteristics, the results demonstrate that the 

Kalman filter is capable of providing accurate and 

nearly unbiased angle and angular rate estimates 

across a wide range of system parameter 

configurations. Systems with lower inertia and 

higher stiffness exhibit faster responses but tend to 

introduce larger transient oscillations, while 

increased inertia and damping improve noise 

suppression at the expense of response speed. The 

correlation analysis further confirms the robustness 

of the Kalman filter, with estimated angles showing 

a strong linear relationship with true values and 

regression slopes close to unity in all cases. Overall, 

the findings highlight that appropriate selection of 

kinematic parameters plays a crucial role in 

balancing tracking accuracy, noise attenuation, and 

dynamic responsiveness. The proposed simulation 

framework and analysis provide a valuable 

reference for the design and tuning of Kalman-

filter-based angular tracking systems in missile 

guidance and other high-dynamic applications 

operating under stochastic noise environments. 
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