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Abstract:

In navigation and target tracking control systems, accurate angular tracking is a crucial requirement to
ensure system stability and precision. However, measurement noise significantly degrades signal quality and
impacts target tracking capabilities. This paper presents a simulation model of an angle tracking system
using a discrete Kalman filter, built upon the differential equations of an electromechanical rotating system.
The novelty of this study lies in evaluating the impact of three characteristic kinematic parameters moment
of inertia, damping coefficient, and stiffness on filtering performance and tracking error. By calculating and
visualizing RMSE, velocity error, and angular error over time, this study clarifies the design parameters’
role in improving angle signal filtering quality. The simulation results are visualized and serve as a
reference for selecting optimal parameter configurations in real-world tracking systems under noise
conditions.
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I. INTRODUCTION

In observation, navigation, or fire control
systems, tracking the angular motion of a target is
essential and directly affects the system's accuracy
and combat effectiveness. In real-world conditions,
sensor measurements are often corrupted by noise,
resulting in significant deviations in measured
angles from the true values. Kalman filters are
widely used to address this issue due to their ability
to combine system models with measured signals
Additionally, the

dynamics of angle tracking systems depend on

for better state estimation.
design-specific parameters such as the moment of

inertia, damping coefficient, and stiffness.
However, the impact of these parameters on
filtering quality under stochastic noise conditions
remains underexplored. This paper focuses on
simulating an angle tracking system with integrated
Kalman filtering using three different sets of
kinematic parameters and evaluates filtering
performance through standard error indices. This is
a crucial step toward determining optimal system

configurations for noisy environments.

II. ALGORITHM SYNTHESIS AND SYSTEM
MODELING

This section presents the theoretical foundation
of the angle tracking model and the discrete Kalman
filter algorithm used in the simulation program. The
equations are developed based on the kinematics of
a rotating servo system and then discretized for
numerical implementation.

The angle tracking system is commonly modeled
as an electromechanical rotational system
influenced by control and resistive torques. The
rotational motion equation is:

d*6 de

—+D—+KO=K86. 1
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Where:

6(t)- Actual rotation angle of the tracking
system [deg];

6.(t) - Command angle [deg];

J - Moment of inertia of the tracker [kg.m?];

D - Rotational damping coefficient [N.m.s/deg];
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K - Torsional stiffness coefficient [N.m/deg].

Equation (1) can be normalized to:

d’0 Dd6 K, K
=+ e=6, 2
e PR L @

To apply the Kalman filter, the system must be
expressed in state-space form. Let:

| x| _| 6@ | . _| 0O
X0 {xz(ﬂ} {é(n}:x(t) {é(t)} ®

Then the state-space equation becomes:

x(t)=Ax(t)+ Bu(r), y(t) = Cx(t) 4)

Where:

u(t)=06.(t)- Input to the angle tracking system
[deg];

y(t)=6(t)- Output of the angle tracking
system [deg].

The matrices are defined as:

0 1 0
A=| K D|B=|K ,Cz[l O} 5)
J J J

Since the simulation runs on a computer, the
system 1is discretized using a time step 7 [s]. Using
the Euler method:

x(k+1) = x(k)+T.x(k)

6
= A, =I+AT,B, =BT ©

Where:
A , - Discrete state matrix;
B " Discrete control matrix.

The discrete noisy system is represented by the
Kalman filter model:

X =Ax, +Bu, +®,,z, =Cx, +, @)
Where:

X, - True state at time step k;
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Z;, - Noisy measurement [deg];

@, [l N(0,Q) - Process noise [deg’];

U, U N(0, R) - Measurement noise [deg’];

Q - Process noise covariance matrix, typically

small;

R - Measurement noise covariance matrix,
defined by sensor.

Kalman Filter Algorithm Steps:

Step 1: State Prediction

Xy =AX +Buy_

By = APk—lAT +0 ®
Where:

)%k k-1 Predicted state (prior to update);

Pk k1 Predicted error covariance [deg?].

Step 2: Kalman Gain Calculation

K, = Pk/k—ICTCPk/k—ICT +R™! ©)

K, - Kalman gain determines the weight
between model prediction and actual measurement.

Step 3: State and Covariance Update

X =X T K (2, —Cx )

(10)
P =(I-K,C)P,

/k—1

is corrected based on the
the actual and predicted
measurement. After filtering, results are evaluated
using:

the state
difference between

Here,

Root Mean Square Error (RMSE):

N
RMSEz\/lZ(xk—fck)z (11)
N =
Bias (Mean Error):
Bias =l§:(x —%)? (12)
N v k k
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Standard Deviation of Error:

N
o= \/iZ[(xk —%,)— Bias]? (13)
N k=1

III. SIMULATION AND EVALUATION

To assess the effectiveness of the Kalman filter
in angle tracking systems and examine how
kinematic parameters (inertia J, damping D,
stiffness K) influence filtering error, the authors
built a simulation with three representative
parameter sets reflecting different dynamic
characteristics of electromechanical systems. The
input signal is a time-varying step function, and
Gaussian noise is added to simulate real-world
conditions. Comparing RMSE, bias, and standard
deviation in each case allows for quantitative
evaluation of Kalman filter performance with each
parameter set.

- Set 1: J = 0.01 (kg.m?), D = 0.05 (N.m.s/deg),
K =1.0 (N.m/deg);

- Set 2: J = 0.02 (kg.m?), D = 0.10 (N.m.s/deg),
K =0.8 (N.m/deg);

- Set 3: J =0.015 (kg.m?), D = 0.08 (N.m.s/deg),
K =0.9 (N.m/deg).

Gaussian measurement noise with a standard
deviation of ¢ = 0.5 (deg) is added. The discrete
Kalman filter is implemented with Q = 0.001.I and
R = 62. The simulation results are as follows:

Target angle, measurement noise, and Kalman filter result

— True angle

---------- Measured (noisy)

""" Filtered J=0.010, D=0.05, K=1.00

""" Filtered J=0.020, D=0.10, K=0.80
Filtered J=0.015, D=0.08, K=0.90

Angle (deg)

Time (s)

Figure 1. Kalman filter output compared to true
angle and noisy measurement

Figure 1 1illustrates the
performance of the

angular tracking
system under Gaussian
The black line
denotes the true target angle, while the red dotted
line represents the measured signal corrupted by
noise (standard deviation ¢ = 0.5 (deg)). After
applying the discrete Kalman filter with three
different sets of dynamic parameters, all filtered
outputs closely track the true angle. Parameter Set 1
yields the fastest response but exhibits slight
overshoot and oscillations near the switching times
at 5 and 10 seconds. Parameter Set 2 responds more
slowly, effectively reducing oscillations but
introducing noticeable delay during transients.
Parameter Set 3 achieves a balanced trade-off
between tracking accuracy and  response
smoothness. These results highlight the critical
influence of dynamic parameters on filtering
performance and transient characteristics.

measurement noise conditions.

100 Angular Rate: True, Noisy Measurement, and Kalman
T T

J=0.010, D=0.05, K=1.00 | |
J=0.020, D=0.10, K=0.80
Estimated J=0.015, D=0.08, K=0.90

80 -

60 -

40 [

20

Angular rate (deg/s)

0

20 |1°

40

-60

Time (s)

Figure 2. Kalman filter output compared to true
angular rate and noisy measurement

Figure 2 illustrates the angular rate response of
the system, including the true angular velocity, the
noisy measured rate obtained from differentiated
angle measurements, and the Kalman filter
estimates  for different ~ parameter
configurations. As expected, the measured angular
rate exhibits significant high-frequency noise due to
the differentiation of noisy angle measurements,
leading to large amplitude fluctuations that do not
reflect the true system dynamics. In contrast, the
Kalman filter effectively suppresses measurement

three
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noise while preserving the transient and steady-state
characteristics of the angular rate. The estimated
angular rates closely follow the true response during
both transient events and steady-state intervals,
demonstrating the robustness of the Kalman filter
against ~measurement noise and parameter
variations. Minor discrepancies between the
estimates are observed during rapid transients,
which can be attributed to differences in inertia,
damping, and stiffness parameters. Overall, the
results confirm the effectiveness of the Kalman
filtering approach in reconstructing angular velocity
from noisy angle measurements.

Angle tracking error
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Figure 3. Angular error and angular velocity
error for each parameter set

Figure 3 shows the estimation errors in angle
(top plot) and angular velocity (bottom plot) across
the three parameter configurations. The angular
error generally remains within #0.1 (deg), and the
low RMSE values indicate the effectiveness of the
Kalman filter in angle estimation. Specifically,
Parameter Set 1 yields an RMSE of 0.0541 (deg),
Set 2 results in 0.0605 (deg), and Set 3 achieves
0.0549 (deg), suggesting minimal angular
estimation error and weak dependence on system
inertia. However,

velocity error reveals more
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significant differences: Set 1 exhibits the largest
error (RMSE = 0.5098deg/s) due to its faster and
more oscillatory response; Set 2 achieves the
smallest error (RMSE = 0.3369deg/s), benefiting
from higher inertia and damping; while Set 3
provides intermediate performance (RMSE =
0.3951deg/s). These results demonstrate that
appropriate selection of system dynamics can
balance  between positional accuracy and
responsiveness in angular tracking systems.
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Figure 4. RMSE, bias, and standard deviation
over time

Figure 4 presents the temporal evolution of
estimation errors using a sliding window of 50
samples. The top graph shows the dynamic RMSE,
where Parameter Set 2 tends to have higher values,
particularly near the step transitions at 5 and 10
seconds indicative of slower adaptation due to
greater inertia. The middle graph shows the bias
remaining close to zero for all configurations,
ensuring unbiased estimates; however, Set 2
exhibits a noticeable positive bias in the 4-6 second
interval. The bottom graph displays the standard
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deviation of estimation error: Sets 1 and 3 remain
within the 0.03-0.07 (deg) range, while Set 2 peaks
at approximately 0.09 (deg), indicating that reduced
oscillation in the response does not necessarily
equate to lower residual noise. These findings
emphasize the need for time-resolved error analysis
to select optimal dynamic parameters tailored to
different operating phases of the tracking system.

Correlation between True and Estimated Angle
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Figure 5. Correlation between true angle and
Kalman filter estimated angle for different
system parameter sets

Figure 5 illustrates the correlation between the
true angle and the angle estimated by the Kalman
filter for three different system parameter sets. In all
cases, the data points are tightly clustered along the
fitted linear regression line with a slope close to
unity, indicating high estimation accuracy and
negligible bias.

For the case with smaller inertia (J = 0.010) and
higher stiffness (K = 1.00), the estimator maintains
excellent linearity, demonstrating the ability of the
Kalman filter to accurately track rapid system
dynamics. When the inertia and damping are
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increased (J = 0.020, D = 0.10), the slope of the
regression line remains close to one, reflecting the
robustness and stability of the filter under parameter
variations. The intermediate parameter set (J =
0.015, D = 0.08, K = 0.90) exhibits similar
behavior, further confirming that the Kalman filter
performance is weakly sensitive to changes in
system parameters within the considered range.
Overall, these results demonstrate that the Kalman
filter provides reliable and nearly unbiased angle
estimates across different system configurations.

IV. CONCLUSION

This paper has presented a comprehensive
simulation-based analysis of a Kalman-filtered
angular tracking system, with particular emphasis
on the influence of kinematic parameters, including
moment of inertia, damping coefficient, and
stiffness, on filtering performance under noisy
measurement conditions. Through the evaluation of
angle response, angular rate estimation, tracking
dynamic RMSE, and correlation
characteristics, the results demonstrate that the
Kalman filter is capable of providing accurate and
nearly unbiased angle and angular rate estimates
across a wide range of system parameter
configurations. Systems with lower inertia and
higher stiffness exhibit faster responses but tend to
introduce larger transient oscillations, while
increased inertia and damping improve noise
suppression at the expense of response speed. The

errors,

correlation analysis further confirms the robustness
of the Kalman filter, with estimated angles showing
a strong linear relationship with true values and
regression slopes close to unity in all cases. Overall,
the findings highlight that appropriate selection of
kinematic parameters plays a crucial role in
balancing tracking accuracy, noise attenuation, and
dynamic responsiveness. The proposed simulation
framework and analysis provide a valuable
reference for the design and tuning of Kalman-
filter-based angular tracking systems in missile
guidance and other high-dynamic applications
operating under stochastic noise environments.
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