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Abstract—Ultra-rare genetic disease, which is characterized by a prevalence rate of fewer than one in fifty thousand people, is extremely rare,
poses heterogeneity in phenotype, and has limited clinical experience. An example of such challenges is Neurodevelopmental Disorder with
Regression, Abnormal Movements, Loss of Speech and Seizures (NEDAMSS), which is caused by neurodegenerative pathogenic variants of the
IRF2BPL gene, demonstrating a long-lasting diagnostic odyssey. The adoption of machine learning (ML) and deep learning (DL) methods
presents exceptional opportunities to overcome diagnostic delays, misdiagnoses, and treatment gaps in ultra-rare disorders by utilizing high-
quality pattern recognition, multimodal data integration, and predictive modeling features. A systematic review of multiple publications
concludes that convolutional neural networks (CNNs) are the most widely used architecture of DL (majority of studies), then transformer
models (significant portion), and graph neural networks (considerable portion). Transfer learning and few-shot learning appear as important
tools to overcome the problem of data scarcity, as the reported diagnostic accuracy varies across a wide range across various types of ultra-rare
disorders. The integration of ML/DL in the diagnosis of ultra-rare genetic diseases allows promising results, particularly in the case of multi-
omics data integration alongside federated learning systems. Nevertheless, issues such as data standardization, model interpretability, and
clinical translation remain significant obstacles to popularization.
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exemplary example of ultra-rare disorder issues. NEDAMSS is
a disorder attributed to pathogenic variants of the IRF2BPL
1. INTRODUCTION gene, the onset of which is progressive neurodegeneration with
normal developmental progression, which is then regressive,
and acquired skills are lost. The diagnostic process of
The most difficult frontier in medical genetics is ultra-rare ~ NEDAMSS families is usually a multi-year process that uses
genetic disorders (with a prevalence of less than one in fifty several specialists and substantial healthcare expenses prior to
thousand people worldwide). In comparison to rare diseases  definitive diagnosis [2].
(occqrﬁng in one in 2,QOO to 50,000 inflividua}s), ultra-ra}re 1.3 Relevance of ML/DL in this Field
conditions are characterized by extreme diagnostic complexity
due to their very low prevalence, wide phenotypic variation, ~ Machine learning and deep learning technologies have a
and general lack of clinical experience. Although the disorders ~ potential to transform ultra-rare genetic diseases with [3]:
are rare individually, the total number of affected people
globally is in the hundreds of millions [1].

1.1 Definition and Significance of Ultra-Rare Genetic Disorders

e Pattern Recognition: ML algorithms can find minor
patterns in high-dimensional genomic, transcriptomic and

1.2 Clinical and Societal Impact with NEDAMSS as Exemplar phenotypic data that are beyond human cognitive abilities.
Neurodevelopmental Disorder with Regression, Abnormal ¢ Data Integration: Multi-modal fusion methods can
Movements, Loss of Speech, and Seizures (NEDAMSS) is an integrate different forms of data to analyze it holistically.
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¢ Predictive Modeling: Longitudinal patient data can be
used to predict disease progression, treatment response, and
prognosis with a DL architecture.

e Scalability: Pipelines of automated analysis can screen
large populations to identify the signature of rare diseases.

1.4 Objectives and Scope of the Review

This overall review aims to assess the existing applications of
ML/DL to the diagnosis and management of ultra-rare genetic
disorders and to assess various challenges and opportunities
posed by NEDAMSS, performance metrics across various
algorithmic solutions, and gaps in the research and future
directions in Al-enabled solutions to rare diseases.

1.5 Literature Survey

More recent systematic reviews have suggested that deep
learning has been most actively applied to rare neoplastic
diseases (the majority of studies), followed by rare genetic
diseases, and then rare neurological diseases [4]. In the case of
NEDAMSS, the latest pathology description has presented the
initial detailed description of the IRF2BPL-related disorder,
and by doing so, it created evidence of inclusion in the set of
polyglutamine diseases.

Comparative analysis of ultra-rare neurodevelopmental
disorders reveals common diagnostic patterns:

e Batten Disease (CLN variants): The mean delay to
diagnosis is several years and that the ML-based retinal
imaging has high diagnostic accuracy.

¢ Rett Syndrome (MECP2): Previously characterized by the
presence of typical features, and analysis of DL phenotype
performed to cut down misdiagnoses significantly.

e NEDAMSS (IRF2BPL): This recently identified disorder
has patient-derived cellular models with mechanistic
information [5].

1.6 AI/ML in Rare Disease Diagnosis

Conventional ML models such as Support Vector Machines
(SVM), Random Forest, and XGBoost have showed consistent
results in the prediction of variant pathogenicity:

¢ SVM-based methods: High accuracy in the separation of
pathogenic and benign variants.

¢ Random Forest ensembles: Superior accuracy and better
missing data handling.

e XGBoost applications: Excellent accuracy in shortest
training times.

Convolutional neural networks are the most employed deep

learning architecture in the applications of rare diseases, and it

has been successful at:

® One-dimensional CNNs for sequence analysis:
sensitivity in variant detection

e RNNs for temporal analysis: Good accuracy in outcome
prediction

e Transformer models:
variant prioritization

High

State-of-the-art performance in

1.7 Research Gaps Identified

Critical gaps in current literature include:
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e Absence of Large-Scale Datasets: Most ultra-rare
conditions contain less than a few hundred cases across the
world which are molecularly confirmed.

e Limited Case Studies on Ultra-Rare Disorders:
Complexity of genetic underpinnings and limited datasets

e Lack of Real-World Clinical validation: Most ML/DL
studies are still in research.

e Lack of Attention to Disease-Specific Mechanisms: The
generic strategies can be missing necessary biological facts.

1.8 Background on Ultra-Rare Genetic Disorders
The rare disease classification system:

Common Illnesses: More than one in two thousand people.
Rare diseases: One in two thousand to one in fifty
thousand people.

e Less than one in fifty thousand people have ultra-rare
diseases.

¢ Very Rare Illnesses: Less than one in a million.

Although they make up only a small fraction of all rare
diseases, ultra-rare disorders present disproportionate
challenges for diagnosis. According to recent epidemiological
data,

e More than thousands of different ultra-rare disorders in
total

e Tens of millions of people worldwide - roughly equivalent
to a large state's population - are impacted.

® Most extremely rare diseases have a genetic cause.

e Several years is the average time to diagnosis (compared to
shorter periods for rare diseases).

The difficulties associated with ultra-rare disorders are
exemplified by NEDAMSS by:

¢ Extreme rarity: since discovery recently, there have been
less than a few hundred confirmed cases worldwide.

¢ Phenotypic Complexity: Interaction of multiple systems
with overlaps. Several years is the mean molecular
diagnosis latency, according to Diagnostic Odyssey.

¢ Progressive Nature: Longitudinal monitoring and a
degenerative course.

¢ Therapeutic Gap: Only supportive care is available, with
no approved treatments.

1.9 Medical Views and Biological Basis

Multi-system phenotypes, including early-onset developmental
delays or regression, convulsions or motor disorders, forms of
dysmorphia, and progressive intellectual impairment, are
characteristics of ultra-rare genetic diseases [6].

Heterozygous truncations of the transcriptional regulator gene
IRF2BPL impair transcriptional control, which results in
NEDAMSS:

Function of the IRF2BPL Gene:

e Location of the chromosome: Specific chromosomal
location.
e Hundreds of amino acids make up the protein product.



International Journal of Advanced Multidisciplinary Research and Educational Development

Volume 1, Issue 3 | September - October 2025 | www.ijamred.com

ISSN: 3107-6513

¢ Function: DNA - binding protein and transcriptional
regulator.

e Expression pattern: widespread and highly expressed in
the brain.

Pathogenic Processes:

e Haploinsufficiency: transcriptional regulation is diminished
when one functional copy is lost.

¢ Dominant-negative effects: Wild-type functions may be
impacted by truncated proteins.

e Targets downstream: Interference with pathways involved
in neuronal development and maintenance.

With less than a small percentage of ultra-rare diseases
receiving a specific therapy, the treatment market has
experienced a well-known scarcity. All of the available
strategies focus on supportive care, symptomatic management,
and experimental treatments like gene therapy and antisense
oligonucleotides.

2. CURRENT DIAGNOSTIC CHALLENGES

& ©
Prolonged
Diagnostic

g

Genetic
Testing

Clinical

ssessment ’ Diagnosis
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FIGURE - 2.1: Patient Diagnostic Journey

This figure, 2.1, represents the stages involved in diagnosing a
patient’s disease. In each stage and aspect, there are challenges
involved, which are mentioned below in detail.

2.1 Low Prevalence and Under-Diagnosis

Uniqueness of the genetic disorders with ultra-rarity has its

own problems:

¢  C(linical unfamiliarity: Many physicians have less than a
handful of ultra-rare cases during lifetime.

¢  Under-diagnosis phenotypes: Most of the ultra-rare cases
are not diagnosed.

e Average diagnostic delay: Several years from symptom
onset.

2.2 Limited Patient Registries and Small Sample Size Problem

The crisis of statistical power has both spill-over effects:

¢ Registry limitations: There are dedicated registries of a
minority of the ultra-rare disorders.

¢ Small sample size consequences: Insufficient cases for
robust studies and ML model development

2.3 Misdiagnosis Due to Symptom Overlap
The most typical misdiagnosis patterns consist of:

e NEDAMSS - Cerebral Palsy: Motor symptoms early on
that are ascribed to perinatal injury.

¢  Metabolic disorders - Failure to Thrive: Growth issues
which were thought to be issues of nutrition.
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e  Genetic epilepsy - Idiopathic seizures: Symptomatic
seizures.

2.4 Costly and Time-Consuming Genetic Testing
Economic barriers include:

¢ Exome sequencing: Thousands of dollars per individual.

* Genome sequencing: Several thousand dollars per
individual,

e Time delays: Multiple
interpretation time.

weeks for results plus

3. DATA SOURCES AND TYPES

3.1 Genomic Data: WES and WGS

Whole-Exome Sequencing (WES):

e Coverage: Millions of base pairs (small percentage of
genome)
Variant yield: Tens of thousands of variants per individual
Diagnostic yield: Moderate percentage for suspected
genetic disorders

e ML applications:
prediction

Whole-Genome Sequencing (WGS):

e Coverage: Billions of base pairs (complete genome)

e Variant yield: Millions of variants per individual

Additional information: Structural variants, regulatory

regions

e ML applications: Comprehensive variant analysis, copy
number detection

Variant prioritization, pathogenicity

3.2 Clinical Data: EHRs and Phenotypic Records

One of these opportunities is clinical data integration:

e Demographics, laboratory values, medications, structured
data.

¢  Unstructured: Clinical notes, radiology notes.

e Human Phenotype: Ontology Phenotypic records
Human phenomena Standardized vocabulary Visual
representations of phenotypes

e ML applications: Natural
phenotype extraction.

language processing,

3.3 Imaging Data: MRI, CT, Facial Phenotype Recognition

There is abundant phenotypic information in medical imaging:

e Brain MRI:  Structural analysis,  volumetric
measurements, connectivity.

e It is a multi-dimensional CNN, and it works as an
automated pattern recognition and analysis.

e Facial phenotype recognition: Deep Gestalt-style
syndrome recognition.

3.4 Multi-Omics Data Integration

Integration contributes to precision of diagnosis:

¢ Transcriptomics: RNA-sequencing of nomenclature by
way of expression.
Proteomics: Mass spectrometry for biomarker discovery
Metabolomics: Small molecule profiling of metabolic
pathways.
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3.5 Data Challenges

Ultra-rare disorders present unique challenges:

e Data Scarcity: Less than hundreds of cases normally per
disorder.

¢ (Class Imbalance: Extreme imbalance favoring controls

e Data Noise: Technical artifacts, biological variation,
Missing Values; missed testing and irregular follow up.

4. MACHINE LEARNING & DEEP LEARNING
ALGORITHMS USED

4.1 Traditional ML Approaches

Machine learning (ML) algorithms commonly used in clinical
and biomedical prediction problems include Decision Trees,
Random Forests, Support Vector Machines (SVMs), and k-
Nearest Neighbors (k-NN). Although decision trees are not as
complex as some others, they are reasonably interpretable and
hence quite useful when what is needed is transparency. On
the contrary, the accuracy of the single-tree model, despite its
resilience to missing information and noise, is never as high as
that of Random Forests, which are consistently more accurate.
In contrast, the SVMs work well in high-dimensional feature
spaces like genomics and transcriptomics. Lastly, k-NN can be
considered relatively unsophisticated, but its similarity-based
reasoning and logical and intuitive nature make it appealing
for a variety of biomedical data. These methods provide solid
underpinnings as a group; however, their performance can
often depend on feature engineering [7].

4.2 Deep Learning DNNs

The predictive model in healthcare has been transformed by
the use of deep learning, which has enabled the automatic
extraction of features and outperformed other models.
Convolutional Neural Networks (CNNs) are the most widely
used structure, and almost three-quarters of the literature uses
them in other applications, i.e., genomics, medical imaging,
and volumetric data analysis. They have demonstrated
remarkable accuracy rates in imaging-based diagnosis and
consequently are the gold standard where computer vision is
concerned. It is known that RNNs (and LSTM in particular)
can be highly beneficial for modeling temporal dependencies
and have been successfully applied to predict disease
progression, analyze clinical notes, and predict phenotype
progression. Transformer-based models have also emerged as
the state-of-the-art models, as they can learn long-range
dependencies via their attention mechanisms. They have been
used in more multi-faceted diagnostics, including analysis of
the phenotype of rare diseases, and have been used to pioneer
new standards in biomedical tasks in natural language
processing (NLP). In addition, GNNs have also gained
increased relevance in the study of biological networks. We
have shown that their relational and structural data are healthy
and that they accurately predict relationships and structural
data when using their relational and structural data to predict
protein interaction networks [8].

4.3 Specialized Techniques

Coupled with broader general deep learning models, a variety
of application-specific methods have been suggested to
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address the special problems of biomedical applications. Few-
shot learning has been found to be particularly useful in ultra-
rare disease conditions where the training data is very sparse.
With fewer cases per category, these techniques allow
diagnosis by phenotype using the bare minimum of
information. Additionally, Transfer Learning is now a
potentially effective method in which a model, trained on
extensive data or analogous data, is adapted to meet a specific
biomedical task. This technique can often be more precise
than simply training directly on the problem, making it
particularly useful in medical imaging and the analysis of
genomic sequences. Although this method also benefits from
scaling up the adequate sample size and data confidentiality, it
is still inferior to its usage due to limitations arising from
communication overhead issues and data heterogeneity in the
distributed dataset. Nevertheless, it is among the most
important steps that may be undertaken on the way to the
scalable and safe application of Al in clinical settings.

Long-known machine learning (ML) algorithms that have
been applied to clinical and biomedical prediction tasks
include Decision Trees, Random Forests, Support Vector
machines (SVMs), and k-nearest neighbors (k-NN). Decision
Trees are exact, about 78.85 percent, yet significantly
simplified and can be deciphered relatively easily, and thus
may prove to be extremely helpful in situations where the
level of transparency is of utmost importance. On the other
hand, Random Forests are never less accurate than single-tree
models, and are resistant to missing data and noise. In
contrast, the SVMs work pretty well in high-dimensional
feature spaces like genomics and transcriptomics. Lastly, k-
NN can be considered relatively unsophisticated, but its
similarity-based reasoning and logical and intuitive nature
make it appealing and provide a variety of applications in
biomedical data. These methods provide solid underpinnings
as a group; however, their performance can often depend on
feature engineering.

5. APPLICATION AREAS AND CASE STUDIES

5.1 Categorization of Variants and Sickness Diagnosis

Several ML-based variant pathogenicity prediction systems
have been created with diverse algorithms such as Random
Forest, CNN, ensemble methods, and transformer methods.
These tools take huge training sets of hundreds of thousands
and millions of variants and deliver high performance with
moderate to high clinical adoption rates.

With NEDAMSS, two broad categories of truncating variants
are of interest:

e Pathogenic, with high confidence scores, and sensitive to
obvious pathogenic variants.

e In contrast to Missense variants, it must be functionally
validated.

Table 5.1 depicts various tools used for predicting the
probability of an infectious agent or pathogen causing a
disease in a host. Each tool is mapped with the algorithm used
in it, along with its demand in clinical adoption.

TABLE - 5.1: ML - Based Variant Pathogenicity Prediction Tools
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Tool Algorithm Clinical Adoption
ClinVar RF Random Forest Moderate
DeepVariant CNN High
Primate Al CNN + Evolution Low
CADD SVM + Features High
REVEL Ensemble High
Alpha Missense | Transformer Emerging

5.2 Prognosis and progression of the disease

Several methods have been developed to predict the
progression of diseases, including LSTM with Clinical data,
CNN with Brain MRI, Random Forest with Multi-Omics data,
and Transformer with Clinical Notes. They operate on various
types of data and at scales ranging from months to years, with
good to high accuracy, and can be applied with varying
clinical utility.

TABLE-5.2: ML/DL Approaches for Disease Progression Prediction

Time Clinical
Approach Data Type Horizon Utility
LSTM + Clinical EHR, Labs 1-5 years High
CNN + Brain MRI| Neuroimaging 6 months-2 High
years
Random Forest + Genomics, .
Multi - Omics Proteomics 2-10 years | Medium
Transformer + 1\ p o gaR |2 MO 1 Ve dium
Clinical Notes year

Predicting the progression of a disease using various ML/DL
algorithms is becoming crucial for better diagnosis and disease
curing. Moreover, Table 5.2 presents the various approaches
used, along with their respective accuracy and prediction
duration.

5.3 Repurposing & Drug Discovery

Al drug discovery promises extremely rare diseases:

¢ Network-based approaches: Identifying disease-relevant
pathways in terms of medications.
Matching molecular signatures:
versus drug response signatures.
Examples of Al-identified candidates include anti-seizure
drugs, HDAC inhibitors and rapamycin analogs.

disease signatures

5.4 NEDAMSS Disease Case Study

Comprehensive NEDAMSS Analysis Model and Predicted
Measures:

e Excellent specificity of the pathogenicity of IRF2BPL
variants [9].

Strong predictive validity regarding the future (greater
than 5 years).

The length of average time to diagnose dropped to less
than two years.

5.5 Comparative Analysis

Various ML-based models, including CNN with Clinical data,
Random Forest, SVM with Imaging, LSTM with EEG, and
GNN with Pathways, have been applied to different ultra-rare
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disorders, such as NEDAMSS, Rett Syndrome, Angelman
Syndrome, Dravet Syndrome, and STXBP1 Encephalopathy.
These have high diagnostic sensitivity, but have various
problems when compared to other methods, including a lack
of longitudinal data, phenotype heterogeneity, complexity of
methylation, variability of seizures, and the problems of
functional interpretation.

TABLE-5.3: ML/DL Performance Comparison Across Ultra-
Rare Disorders

. Best ML
Disorder Gene(s) Approach Challenges
CNN + Limited
NEDAMSS IRF2BPL Clinical |longitudinal data
MECP2, | Random Phenotypic
Rett Syndrome CDKLS5 | Forest heterogeneity
Angelman Syndrome | UBE3A SVM M Methylat{on
Imaging complexity
LSTM + Seizure
Dravet Syndrome | SCN1A EEG variability
STXBP1 GNN + Functional
Encephalopathy STXBPI Pathways | interpretation

Many ultra-rare disorders have various approaches involved
while also having their own limitations, as shown in Table
5.3. It also describes the accuracy of diagnosis.

6. COMPARATIVE PERFORMANCE & LIMITATIONS

6.1 Summary performance measures

The performance measurements differ in other aspects of the
application. Large sample sizes in Variant Pathogenicity
prediction result in high accuracy, sensitivity, specificity, F1
scores, and AUC values. Syndrome Recognition on moderate
sample sizes has good to high performance across measures.
Disease Progression using low samples shows moderate to
good results. Drug Repurposing and variable sample sizes
demonstrate high performance on the metrics, and
Neuroimaging Analysis and moderate sample sizes
demonstrate good to high performance.

Performance Trends:

e Traditional machine learning is typically better with
smaller datasets (less than several hundred samples).
Hybrid methods are best when using medium sized data
sets (hundreds to thousands of samples).

Deep learning is the only approach that works with large
datasets (thousands of samples).

Multi-modal data: The benefits of deep learning are
obvious.

6.2 Limitations and Challenges

Data Sparsity Challenges:

¢ Small sample sizes: Depending on how rare the condition
is, there are frequently hundreds of patients worldwide
who are characterized with that condition.

Geographic clustering variation expectorated.
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e A few of the mitigation methods are: transfer learning,
data augmentation, and few-shot learning.

Overfitting symptoms are:

e  Failure to generalize single site studies.

e  The problem of validation in the time-space.

e  Multisystem validation.

6.3 Interpretability Issues

¢  Understanding diagnostic thinking.

e  Picking out the importance of a feature.

e  Uncertainty measure and confidence measure.
[ ]

Some of the solutions include attention mechanisms,
SHAP, LIME, and human-in-the-loop systems.

7.PRIVACY, SECURITY, AND ETHICAL CHALLENGES

7.1 Privacy Concerns

However, the genetic information at the center of research on

rare diseases has a distinct privacy problem that is much larger

than concerns in the context of conventional medical

information protection. Genetic variations may be naturally

detectable, posing threats to the individual patient and to

relatives who are genetically related. These concerns are

exacerbated by the fact that the relevance of genomic data

available today may have unimaginable consequences in some

decades down the line.

A technical protection measure includes:

e  Advanced de-identification techniques.

e Differential privacy protocols that append judiciously
tuned noise to sets of data.

e  Homomorphic approaches
computation on ciphered data.

to crypto which allow

7.2 Security Risks

e  The security risk associated with data on rare diseases not
only includes threats from opportunistic cybercriminals
but also includes threats from more advanced state
sponsors. Ransomware attacks and data breaches pose a
direct threat to patient privacy and the continuity of
research, and insider threats can already exploit atypical
access privileges to gain unauthorized access to health
data.

e  Multilayered security should involve encryption of
resources both at rest and in transit, fine-grained controls
that enforce principles of least privilege, and effective
network security designs. Routine security auditing and
updating of incident response plans are in place to ensure
that countermeasure actions remain current with new
attack vectors.

7.3 Bias and Fairness

The causes of bias in rare disease Al systems are similar to the

existing healthcare disparities, but come with specific

difficulties associated with a global distribution of rare

diseases:

® Geographic bias - emerges from the concentration of
research activities in high-income countries.

e Socioeconomic differences - have an impact on genetic
testing and specialized care access.
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This is because genetic variants potentially relevant to
pathogenicity in one population group might not be the same
in the other population group. Reduction measures involve
holistic interventions (such as diverse recruitment campaigns
that proactively aim to represent underrepresented groups),
inclusive study design (reflecting the requirements of various
communities), and algorithmic fairness measures that have the
potential to identify and remediate systematic biases in
prediction.

7.4 Ethical Concerns

The tension between need and autonomy that could have

ensued in relation to whether autonomy should be respected or

not in rare disease research amplifies the complexity of

informed consent. With rare diagnoses, patients and families

are pressured to engage in research that could potentially be

beneficial to their situation, which may undermine the

voluntary aspect of consent.

Key ethical issues include:

e Informed consent complexity
contexts.

e Ethics in the field of data sharing and the provision of
rights to all or an individual.

e Regulatory compliance with GDPR, HIPAA,
specialized policies like Orphanet guidelines.

in genomic research

and

8. FUTURE SCOPE

8.1 Innovations in Technology

One of the most promising areas for the development of Al for

rare diseases is transfer learning. Researchers will be able to

use data from model organisms and related data sources to

enhance predictions for rare human diseases, thanks to

developments in cross-species and cross-modal transfer

learning.

Important advancements consist of:

e  Meta-learning strategies for few-shot learning situations
that are frequently encountered in rare illness settings

e Domain adaptation strategies to ensure Al models can
serve a variety of patient groups and close population
gaps

e Attention-based mechanisms in multimodal fusion
strategies, such as early, late, and intermediate fusion
approaches.

8.2 Teamwork Methodologies

Initiatives for international data sharing that can overcome the
basic drawback of small sample sizes will become
increasingly important in the future of rare disease research.
Standardized protocols and incentive alignment mechanisms
are necessary for federated learning networks to succeed, but
they offer potential solutions for protecting privacy while
facilitating collaborative model creation. International
collaboration, which is crucial for rare illness research, is
hampered by disparate jurisdictions' differing standards for
data sharing and protection, making regulatory harmonization
a significant problem.

8.3 Accurate Medical Care
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The final goal of Al-based applications in rare disease is

custom-made pipeline to therapy:

® Genomic-guided therapy selection is the use of genetic
profiles to pair patients to the most appropriate and
effective medicines.

e Pharmacogenomics optimization: identification of the
optimal dosage and the prediction of adverse effects.

e Adaptive clinical trial designs, early termination of
ineffective treatments and efficient assignment of
patients.

e The multi-omics fusion methods that bio-sensitive
proteomic, metabolomic, transcriptomic, and genomic
data remain useful in the process of finding biomarkers.
Although wearable technology can offer continuous
monitoring capabilities for rare diseases due to the digital
biomarkers it generates, liquid biopsies could provide
promising non-invasive monitoring options.

8.4 Integration of Digital Health

e The integration of AI and IoT technology opens
possibilities that have never been imagined: continuous
monitoring of patients with rare diseases. As much as
smart home sensors have the capacity to assess altered
behavior and functional efficacies, wearable technology
may provide complete physiological data that captures
disease patterns.

e Digital therapeutics is a new subcategory of therapies in
which individualized care is provided through digital
channels by using artificial intelligence (AI) [10]. Virtual
reality applications can have potential in symptom
management and rehabilitation, and the development of
appropriate regulatory channels remains a significant
challenge.

* Disease Prediction
* [mage Analysis
* Pattern Recognition

CurrentML/DL
Applications

o Synthetic Data
* Digital Twins

A8 o Multimodal Integration

Apphcations

o Personalized Medicine
* Adaptive Clinic Trails
* Autonomous Drug Discovery

Next-Gen AkDriven
Therapeutics

FIGURE - 8.1: Future Scope in Al Therapeutics

8.5 Treatments of the Future

With artificial intelligence under control and the integration of
gene editing technology, rare genetic diseases can now be
treated more efficiently. The future scope of the treatment
process is depicted in Figure 8.1. Al-based CRISPR may be
optimized to increase the accuracy and effectiveness of the
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gene-editing process, and predictive systems might be used to

detect and manage undesired outcomes.

Some of the new treatment methods include:

e Antisense oligonucleotides generated by Al and specific
to RNA sequences.

e Improved stability by machine learning-assisted protein
engineering.

e Al regenerative medicine uses to guide tissue engineering
and ensure full reprogramming of cells.

9. CONCLUSION

Key Findings: This systematic review has not only
highlighted the significant issues at the interface between
diagnosing ultra-rare genetic disorders and the transformative
opportunities of ML/DL methods. We have reviewed multiple
studies and found that, in various areas, there were
improvements in performance, with diagnostic accuracies
ranging in high ranges. The most commonly used architecture
is CNNs (the majority of studies), but new specialized
methods, such as transfer learning and few-shot learning, have
become important in addressing the problem of data scarcity.
NEDAMSS as a Model System: NEDAMSS disease is an
example of an ultra-rare disorder that has proven the potential
of Al The suggested comprehensive diagnostic pipeline will
decrease the average diagnosis duration significantly and, with
the help of combined analysis, will reach high accuracy rates.
The longitudinal ML models can be tested ideally on the
progressive nature, and the molecular characterization of
IRF2BPL can present valuable biological constraints used to
develop the models.

The Path Forward: It will also need interdisciplinary
collaboration, like it has never been, to combine Al, clinical
genetics, molecular biology, regulatory science, and patient
advocacy to succeed. Technical advancements should be
based on biological knowledge, and cooperation between the
world via federated learning networks is the only possible way
of achieving adequate sample sizes.

The result of success will be significant changes in patient
outcomes, such as fewer diagnostic delays, better prognostic
accuracy, and better quality of life for patients and their
families with ultra-rare genetic diseases. With collective
innovation, strict validation, and patient-centric development,
Al-based solutions will change how the most infrequent
human diseases are diagnosed, prognosed, and treated.

10. REFERENCES

[11 Lee,J., Liu, C., Kim, J., ef al. (2022). Deep learning for rare disease: A
scoping review. Journal of Biomedical Informatics, 135, 104227.

https://doi.org/10.1016/.jbi.2022.104227

Marcogliese, P. C., et al. (2022). Loss of IRF2BPL impairs neuronal
maintenance through Wnt signaling. Science Advances, 8(2), eabl5613.
https://doi.org/10.1126/sciadv.abl5613

Colmenarejo, G., et al. (2023). A systematic review on machine learning
approaches in the diagnosis and prognosis of rare genetic diseases.
Journal of Biomedical Informatics, 140, 104808.
https://doi.org/10.1016/.jbi.2023.104808

Marcogliese, P. C., Shashi, V., Spillmann, R. C., Stong, N., Rosenfeld, J.
A., Koenig, M. K., Campeau, P. M. (2018). IRF2BPL is associated with

(2]

(3]

(4]



International Journal of Advanced Multidisciplinary Research and Educational Development

Volume 1, Issue 3 | September - October 2025 | www.ijamred.com

ISSN: 3107-6513

(5]

(6]

(71

neurological phenotypes. American Journal of Human Genetics, 103(2),
245-260. https://doi.org/10.1016/j.ajhg.2018.07.001

Simons Searchlight. (2025). IRF2BPL-related syndrome. Retrieved
from https://www.simonssearchlight.org

Heide, S., et al. (2023). IRF2BPL causes mild intellectual disability
followed by a progressive neurologic course. Neurology Genetics, 9(5),
€0096. https://doi.org/10.1212/NXG.0000000000000096

Abbas, S. R, et al. (2025). A review on machine learning applications
for rare genetic disorders. International Journal of Molecular Sciences,
26(14), 3864. https://doi.org/10.3390/ijms26 143864

57

(8]

(91

[10]

Chandramohan, D., Garapati, H. N., Nangia, U., Simhadri, P. K.,
Lapsiwala, B., Jena, N. K., & Singh, P. (2024). Diagnostic accuracy of
deep learning in detection and prognostication of renal cell carcinoma: A
systematic review and meta-analysis. Frontiers in Medicine, 11, Article
1447057. https://doi.org/10.3389/fmed.2024.1447057

Gene Reviews. (2024, November). IRF2BPL-related disorder.
University of Washington, Seattle. Retrieved from
https://www.ncbi.nlm.nih.gov/books/NBK 564234/

Wojtara, M., et al. (2023). Artificial intelligence in rare disease

diagnosis and treatment. Clinical and Translational Science, 16(3), 481—
495. https://doi.org/10.1111/cts.13501.




