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Abstract—Ultra-rare genetic disease, which is characterized by a prevalence rate of fewer than one in fifty thousand people, is extremely rare, 

poses heterogeneity in phenotype, and has limited clinical experience. An example of such challenges is Neurodevelopmental Disorder with 

Regression, Abnormal Movements, Loss of Speech and Seizures (NEDAMSS), which is caused by neurodegenerative pathogenic variants of the 

IRF2BPL gene, demonstrating a long-lasting diagnostic odyssey. The adoption of machine learning (ML) and deep learning (DL) methods 

presents exceptional opportunities to overcome diagnostic delays, misdiagnoses, and treatment gaps in ultra-rare disorders by utilizing high-

quality pattern recognition, multimodal data integration, and predictive modeling features. A systematic review of multiple publications 

concludes that convolutional neural networks (CNNs) are the most widely used architecture of DL (majority of studies), then transformer 

models (significant portion), and graph neural networks (considerable portion). Transfer learning and few-shot learning appear as important 

tools to overcome the problem of data scarcity, as the reported diagnostic accuracy varies across a wide range across various types of ultra-rare 

disorders. The integration of ML/DL in the diagnosis of ultra-rare genetic diseases allows promising results, particularly in the case of multi-

omics data integration alongside federated learning systems. Nevertheless, issues such as data standardization, model interpretability, and 

clinical translation remain significant obstacles to popularization. 

Keywords— Ultra-rare genetic disorders; NEDAMSS; IRF2BPL; Machine Learning; Deep Learning; precision medicine; rare disease 

diagnosis

 

1. INTRODUCTION 

1.1 Definition and Significance of Ultra-Rare Genetic Disorders 

The most difficult frontier in medical genetics is ultra-rare 
genetic disorders (with a prevalence of less than one in fifty 
thousand people worldwide). In comparison to rare diseases 
(occurring in one in 2,000 to 50,000 individuals), ultra-rare 
conditions are characterized by extreme diagnostic complexity 
due to their very low prevalence, wide phenotypic variation, 
and general lack of clinical experience. Although the disorders 
are rare individually, the total number of affected people 
globally is in the hundreds of millions [1].  

1.2 Clinical and Societal Impact with NEDAMSS as Exemplar 

Neurodevelopmental Disorder with Regression, Abnormal 
Movements, Loss of Speech, and Seizures (NEDAMSS) is an 

exemplary example of ultra-rare disorder issues. NEDAMSS is 
a disorder attributed to pathogenic variants of the IRF2BPL 
gene, the onset of which is progressive neurodegeneration with 
normal developmental progression, which is then regressive, 
and acquired skills are lost. The diagnostic process of 
NEDAMSS families is usually a multi-year process that uses 
several specialists and substantial healthcare expenses prior to 
definitive diagnosis [2].  

1.3 Relevance of ML/DL in this Field 

Machine learning and deep learning technologies have a 
potential to transform ultra-rare genetic diseases with [3]: 

• Pattern Recognition: ML algorithms can find minor 
patterns in high-dimensional genomic, transcriptomic and 

phenotypic data that are beyond human cognitive abilities. 

• Data Integration: Multi-modal fusion methods can 

integrate different forms of data to analyze it holistically. 
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• Predictive Modeling: Longitudinal patient data can be 

used to predict disease progression, treatment response, and 

prognosis with a DL architecture. 

• Scalability: Pipelines of automated analysis can screen 

large populations to identify the signature of rare diseases. 
 

1.4 Objectives and Scope of the Review 

This overall review aims to assess the existing applications of 
ML/DL to the diagnosis and management of ultra-rare genetic 
disorders and to assess various challenges and opportunities 
posed by NEDAMSS, performance metrics across various 
algorithmic solutions, and gaps in the research and future 
directions in AI-enabled solutions to rare diseases. 

1.5 Literature Survey 

More recent systematic reviews have suggested that deep 
learning has been most actively applied to rare neoplastic 
diseases (the majority of studies), followed by rare genetic 
diseases, and then rare neurological diseases [4]. In the case of 
NEDAMSS, the latest pathology description has presented the 
initial detailed description of the IRF2BPL-related disorder, 
and by doing so, it created evidence of inclusion in the set of 
polyglutamine diseases. 

Comparative analysis of ultra-rare neurodevelopmental 
disorders reveals common diagnostic patterns: 

• Batten Disease (CLN variants): The mean delay to 

diagnosis is several years and that the ML-based retinal 

imaging has high diagnostic accuracy. 

• Rett Syndrome (MECP2): Previously characterized by the 
presence of typical features, and analysis of DL phenotype 

performed to cut down misdiagnoses significantly. 

• NEDAMSS (IRF2BPL): This recently identified disorder 

has patient-derived cellular models with mechanistic 

information [5]. 
 

1.6 AI/ML in Rare Disease Diagnosis 

Conventional ML models such as Support Vector Machines 
(SVM), Random Forest, and XGBoost have showed consistent 
results in the prediction of variant pathogenicity: 

• SVM-based methods: High accuracy in the separation of 

pathogenic and benign variants. 

• Random Forest ensembles: Superior accuracy and better 

missing data handling. 

• XGBoost applications: Excellent accuracy in shortest 

training times. 
Convolutional neural networks are the most employed deep 
learning architecture in the applications of rare diseases, and it 
has been successful at: 

• One-dimensional CNNs for sequence analysis: High 

sensitivity in variant detection 

• RNNs for temporal analysis: Good accuracy in outcome 

prediction 

• Transformer models: State-of-the-art performance in 

variant prioritization 
 

1.7 Research Gaps Identified 

Critical gaps in current literature include: 

• Absence of Large-Scale Datasets: Most ultra-rare 

conditions contain less than a few hundred cases across the 

world which are molecularly confirmed. 

• Limited Case Studies on Ultra-Rare Disorders: 

Complexity of genetic underpinnings and limited datasets 

• Lack of Real-World Clinical validation: Most ML/DL 

studies are still in research. 

• Lack of Attention to Disease-Specific Mechanisms: The 

generic strategies can be missing necessary biological facts. 
 

1.8 Background on Ultra-Rare Genetic Disorders 

The rare disease classification system: 

• Common Illnesses: More than one in two thousand people. 

• Rare diseases: One in two thousand to one in fifty 

thousand people. 

• Less than one in fifty thousand people have ultra-rare 

diseases. 

• Very Rare Illnesses: Less than one in a million. 
 

Although they make up only a small fraction of all rare 
diseases, ultra-rare disorders present disproportionate 
challenges for diagnosis. According to recent epidemiological 
data, 

• More than thousands of different ultra-rare disorders in 

total 

• Tens of millions of people worldwide - roughly equivalent 

to a large state's population - are impacted. 

• Most extremely rare diseases have a genetic cause. 

• Several years is the average time to diagnosis (compared to 

shorter periods for rare diseases). 
 

The difficulties associated with ultra-rare disorders are 
exemplified by NEDAMSS by: 

• Extreme rarity: since discovery recently, there have been 

less than a few hundred confirmed cases worldwide. 

• Phenotypic Complexity: Interaction of multiple systems 

with overlaps. Several years is the mean molecular 

diagnosis latency, according to Diagnostic Odyssey. 

• Progressive Nature: Longitudinal monitoring and a 
degenerative course. 

• Therapeutic Gap: Only supportive care is available, with 

no approved treatments. 

 
1.9 Medical Views and Biological Basis 

Multi-system phenotypes, including early-onset developmental 
delays or regression, convulsions or motor disorders, forms of 
dysmorphia, and progressive intellectual impairment, are 
characteristics of ultra-rare genetic diseases [6]. 

Heterozygous truncations of the transcriptional regulator gene 
IRF2BPL impair transcriptional control, which results in 
NEDAMSS: 

Function of the IRF2BPL Gene: 

• Location of the chromosome: Specific chromosomal 

location. 

• Hundreds of amino acids make up the protein product. 
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• Function: DNA - binding protein and transcriptional 

regulator. 

• Expression pattern: widespread and highly expressed in 

the brain. 
Pathogenic Processes: 

• Haploinsufficiency: transcriptional regulation is diminished 

when one functional copy is lost. 

• Dominant-negative effects: Wild-type functions may be 

impacted by truncated proteins. 

• Targets downstream: Interference with pathways involved 

in neuronal development and maintenance. 
 

With less than a small percentage of ultra-rare diseases 
receiving a specific therapy, the treatment market has 
experienced a well-known scarcity. All of the available 
strategies focus on supportive care, symptomatic management, 
and experimental treatments like gene therapy and antisense 
oligonucleotides. 

2. CURRENT DIAGNOSTIC CHALLENGES 

FIGURE - 2.1: Patient Diagnostic Journey 

 

This figure, 2.1, represents the stages involved in diagnosing a 

patient’s disease. In each stage and aspect, there are challenges 

involved, which are mentioned below in detail. 

 
2.1 Low Prevalence and Under-Diagnosis 
 

Uniqueness of the genetic disorders with ultra-rarity has its 

own problems: 

• Clinical unfamiliarity: Many physicians have less than a 

handful of ultra-rare cases during lifetime. 

• Under-diagnosis phenotypes: Most of the ultra-rare cases 

are not diagnosed. 

• Average diagnostic delay: Several years from symptom 

onset. 

 
2.2 Limited Patient Registries and Small Sample Size Problem 
 

The crisis of statistical power has both spill-over effects: 

• Registry limitations: There are dedicated registries of a 

minority of the ultra-rare disorders. 

• Small sample size consequences: Insufficient cases for 
robust studies and ML model development 

 

2.3 Misdiagnosis Due to Symptom Overlap 

The most typical misdiagnosis patterns consist of: 

• NEDAMSS - Cerebral Palsy: Motor symptoms early on 

that are ascribed to perinatal injury. 

• Metabolic disorders - Failure to Thrive: Growth issues 

which were thought to be issues of nutrition. 

• Genetic epilepsy - Idiopathic seizures: Symptomatic 

seizures. 
 

2.4 Costly and Time-Consuming Genetic Testing 

Economic barriers include: 

• Exome sequencing: Thousands of dollars per individual. 

• Genome sequencing: Several thousand dollars per 

individual, 

• Time delays: Multiple weeks for results plus 

interpretation time. 
 

3. DATA SOURCES AND TYPES 

 
3.1 Genomic Data: WES and WGS 
 

Whole-Exome Sequencing (WES): 

• Coverage: Millions of base pairs (small percentage of 

genome) 

• Variant yield: Tens of thousands of variants per individual 

• Diagnostic yield: Moderate percentage for suspected 

genetic disorders 

• ML applications: Variant prioritization, pathogenicity 

prediction 
 

Whole-Genome Sequencing (WGS): 

• Coverage: Billions of base pairs (complete genome) 

• Variant yield: Millions of variants per individual 

• Additional information: Structural variants, regulatory 

regions 

• ML applications: Comprehensive variant analysis, copy 

number detection 

 
3.2 Clinical Data: EHRs and Phenotypic Records 

One of these opportunities is clinical data integration: 

• Demographics, laboratory values, medications, structured 

data. 

• Unstructured: Clinical notes, radiology notes. 

• Human Phenotype: Ontology Phenotypic records 

Human phenomena Standardized vocabulary Visual 

representations of phenotypes 

• ML applications: Natural language processing, 

phenotype extraction. 

 
3.3 Imaging Data: MRI, CT, Facial Phenotype Recognition 

There is abundant phenotypic information in medical imaging: 

• Brain MRI: Structural analysis, volumetric 

measurements, connectivity. 

• It is a multi-dimensional CNN, and it works as an 

automated pattern recognition and analysis. 

• Facial phenotype recognition: Deep Gestalt-style 

syndrome recognition. 

 
3.4 Multi-Omics Data Integration 

Integration contributes to precision of diagnosis: 

• Transcriptomics: RNA-sequencing of nomenclature by 

way of expression. 

• Proteomics: Mass spectrometry for biomarker discovery 

• Metabolomics: Small molecule profiling of metabolic 

pathways. 
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3.5 Data Challenges 

Ultra-rare disorders present unique challenges: 

• Data Scarcity: Less than hundreds of cases normally per 

disorder. 

• Class Imbalance: Extreme imbalance favoring controls 

• Data Noise: Technical artifacts, biological variation, 

Missing Values; missed testing and irregular follow up. 
 

4. MACHINE LEARNING & DEEP LEARNING 

ALGORITHMS USED 
 

4.1 Traditional ML Approaches  

Machine learning (ML) algorithms commonly used in clinical 

and biomedical prediction problems include Decision Trees, 
Random Forests, Support Vector Machines (SVMs), and k-

Nearest Neighbors (k-NN). Although decision trees are not as 

complex as some others, they are reasonably interpretable and 

hence quite useful when what is needed is transparency. On 

the contrary, the accuracy of the single-tree model, despite its 

resilience to missing information and noise, is never as high as 

that of Random Forests, which are consistently more accurate. 

In contrast, the SVMs work well in high-dimensional feature 

spaces like genomics and transcriptomics. Lastly, k-NN can be 

considered relatively unsophisticated, but its similarity-based 

reasoning and logical and intuitive nature make it appealing 

for a variety of biomedical data. These methods provide solid 
underpinnings as a group; however, their performance can 

often depend on feature engineering [7]. 

 
4.2 Deep Learning DNNs 

The predictive model in healthcare has been transformed by 

the use of deep learning, which has enabled the automatic 

extraction of features and outperformed other models. 

Convolutional Neural Networks (CNNs) are the most widely 
used structure, and almost three-quarters of the literature uses 

them in other applications, i.e., genomics, medical imaging, 

and volumetric data analysis. They have demonstrated 

remarkable accuracy rates in imaging-based diagnosis and 

consequently are the gold standard where computer vision is 

concerned. It is known that RNNs (and LSTM in particular) 

can be highly beneficial for modeling temporal dependencies 

and have been successfully applied to predict disease 

progression, analyze clinical notes, and predict phenotype 

progression. Transformer-based models have also emerged as 

the state-of-the-art models, as they can learn long-range 

dependencies via their attention mechanisms. They have been 
used in more multi-faceted diagnostics, including analysis of 

the phenotype of rare diseases, and have been used to pioneer 

new standards in biomedical tasks in natural language 

processing (NLP). In addition, GNNs have also gained 

increased relevance in the study of biological networks. We 

have shown that their relational and structural data are healthy 

and that they accurately predict relationships and structural 

data when using their relational and structural data to predict 

protein interaction networks [8]. 

 
4.3 Specialized Techniques  

Coupled with broader general deep learning models, a variety 

of application-specific methods have been suggested to 

address the special problems of biomedical applications. Few-

shot learning has been found to be particularly useful in ultra-

rare disease conditions where the training data is very sparse. 

With fewer cases per category, these techniques allow 

diagnosis by phenotype using the bare minimum of 
information. Additionally, Transfer Learning is now a 

potentially effective method in which a model, trained on 

extensive data or analogous data, is adapted to meet a specific 

biomedical task. This technique can often be more precise 

than simply training directly on the problem, making it 

particularly useful in medical imaging and the analysis of 

genomic sequences. Although this method also benefits from 

scaling up the adequate sample size and data confidentiality, it 

is still inferior to its usage due to limitations arising from 

communication overhead issues and data heterogeneity in the 

distributed dataset. Nevertheless, it is among the most 

important steps that may be undertaken on the way to the 
scalable and safe application of AI in clinical settings. 
 

Long-known machine learning (ML) algorithms that have 

been applied to clinical and biomedical prediction tasks 

include Decision Trees, Random Forests, Support Vector 

machines (SVMs), and k-nearest neighbors (k-NN). Decision 

Trees are exact, about 78.85 percent, yet significantly 

simplified and can be deciphered relatively easily, and thus 

may prove to be extremely helpful in situations where the 

level of transparency is of utmost importance. On the other 

hand, Random Forests are never less accurate than single-tree 

models, and are resistant to missing data and noise. In 
contrast, the SVMs work pretty well in high-dimensional 

feature spaces like genomics and transcriptomics. Lastly, k-

NN can be considered relatively unsophisticated, but its 

similarity-based reasoning and logical and intuitive nature 

make it appealing and provide a variety of applications in 

biomedical data. These methods provide solid underpinnings 

as a group; however, their performance can often depend on 

feature engineering. 

 

5. APPLICATION AREAS AND CASE STUDIES 

 

5.1 Categorization of Variants and Sickness Diagnosis 

Several ML-based variant pathogenicity prediction systems 

have been created with diverse algorithms such as Random 

Forest, CNN, ensemble methods, and transformer methods. 

These tools take huge training sets of hundreds of thousands 

and millions of variants and deliver high performance with 

moderate to high clinical adoption rates. 

With NEDAMSS, two broad categories of truncating variants 
are of interest: 

• Pathogenic, with high confidence scores, and sensitive to 

obvious pathogenic variants. 

• In contrast to Missense variants, it must be functionally 

validated. 

 

Table 5.1 depicts various tools used for predicting the 

probability of an infectious agent or pathogen causing a 

disease in a host. Each tool is mapped with the algorithm used 

in it, along with its demand in clinical adoption. 

TABLE - 5.1: ML - Based Variant Pathogenicity Prediction Tools 
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Tool Algorithm Clinical Adoption 

ClinVar RF Random Forest Moderate 

DeepVariant CNN High 

Primate AI CNN + Evolution Low 

CADD SVM + Features High 

REVEL Ensemble High 

Alpha Missense Transformer Emerging 

 
5.2 Prognosis and progression of the disease 

Several methods have been developed to predict the 

progression of diseases, including LSTM with Clinical data, 

CNN with Brain MRI, Random Forest with Multi-Omics data, 

and Transformer with Clinical Notes. They operate on various 

types of data and at scales ranging from months to years, with 

good to high accuracy, and can be applied with varying 

clinical utility. 

TABLE-5.2: ML/DL Approaches for Disease Progression Prediction 

Approach Data Type 
Time 

Horizon 

Clinical 

Utility 

LSTM + Clinical EHR, Labs 1-5 years High 

CNN + Brain MRI Neuroimaging 
6 months-2 

years 
High 

Random Forest + 

Multi - Omics 

Genomics, 

Proteomics 
2-10 years Medium 

Transformer + 

Clinical Notes 
NLP from EHR 

3 months-1 

year 
Medium 

 

Predicting the progression of a disease using various ML/DL 

algorithms is becoming crucial for better diagnosis and disease 

curing. Moreover, Table 5.2 presents the various approaches 

used, along with their respective accuracy and prediction 

duration. 

 
5.3 Repurposing & Drug Discovery  

AI drug discovery promises extremely rare diseases:  

• Network-based approaches: Identifying disease-relevant 

pathways in terms of medications. 

• Matching molecular signatures: disease signatures 

versus drug response signatures. 

• Examples of AI-identified candidates include anti-seizure 

drugs, HDAC inhibitors and rapamycin analogs. 

 
5.4 NEDAMSS Disease Case Study 

Comprehensive NEDAMSS Analysis Model and Predicted 

Measures:  

• Excellent specificity of the pathogenicity of IRF2BPL 

variants [9]. 

• Strong predictive validity regarding the future (greater 

than 5 years). 

• The length of average time to diagnose dropped to less 
than two years. 

 
5.5 Comparative Analysis 

Various ML-based models, including CNN with Clinical data, 

Random Forest, SVM with Imaging, LSTM with EEG, and 

GNN with Pathways, have been applied to different ultra-rare 

disorders, such as NEDAMSS, Rett Syndrome, Angelman 

Syndrome, Dravet Syndrome, and STXBP1 Encephalopathy. 

These have high diagnostic sensitivity, but have various 

problems when compared to other methods, including a lack 

of longitudinal data, phenotype heterogeneity, complexity of 
methylation, variability of seizures, and the problems of 

functional interpretation. 

TABLE-5.3: ML/DL Performance Comparison Across Ultra-

Rare Disorders 

Disorder Gene(s) 
Best ML 

Approach 
Challenges 

NEDAMSS IRF2BPL 
CNN + 

Clinical 

Limited 

longitudinal data 

Rett Syndrome 
MECP2, 

CDKL5 

Random 

Forest 

Phenotypic 

heterogeneity 

Angelman Syndrome UBE3A 
SVM + 

Imaging 

Methylation 

complexity 

Dravet Syndrome SCN1A 
LSTM + 

EEG 

Seizure 

variability 

STXBP1 

Encephalopathy 
STXBP1 

GNN + 

Pathways 

Functional 

interpretation 

 

Many ultra-rare disorders have various approaches involved 

while also having their own limitations, as shown in Table 

5.3. It also describes the accuracy of diagnosis. 

 

6. COMPARATIVE PERFORMANCE & LIMITATIONS 

 
6.1 Summary performance measures 

The performance measurements differ in other aspects of the 

application. Large sample sizes in Variant Pathogenicity 
prediction result in high accuracy, sensitivity, specificity, F1 

scores, and AUC values. Syndrome Recognition on moderate 

sample sizes has good to high performance across measures. 

Disease Progression using low samples shows moderate to 

good results. Drug Repurposing and variable sample sizes 

demonstrate high performance on the metrics, and 

Neuroimaging Analysis and moderate sample sizes 

demonstrate good to high performance.  

 
Performance Trends:  

• Traditional machine learning is typically better with 

smaller datasets (less than several hundred samples).  

• Hybrid methods are best when using medium sized data 

sets (hundreds to thousands of samples).  

• Deep learning is the only approach that works with large 

datasets (thousands of samples).  

• Multi-modal data: The benefits of deep learning are 

obvious. 
 

 
6.2 Limitations and Challenges  
 

 
Data Sparsity Challenges:  

• Small sample sizes: Depending on how rare the condition 

is, there are frequently hundreds of patients worldwide 

who are characterized with that condition.  

• Geographic clustering variation expectorated.  
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• A few of the mitigation methods are: transfer learning, 

data augmentation, and few-shot learning.  
Overfitting symptoms are: 

• Failure to generalize single site studies.  

• The problem of validation in the time-space.  

• Multisystem validation. 

 
6.3 Interpretability Issues  

• Understanding diagnostic thinking.  

• Picking out the importance of a feature.  

• Uncertainty measure and confidence measure.  

• Some of the solutions include attention mechanisms, 

SHAP, LIME, and human-in-the-loop systems. 

 
7. PRIVACY, SECURITY, AND ETHICAL CHALLENGES 

 
7.1 Privacy Concerns 

However, the genetic information at the center of research on 
rare diseases has a distinct privacy problem that is much larger 

than concerns in the context of conventional medical 

information protection. Genetic variations may be naturally 

detectable, posing threats to the individual patient and to 

relatives who are genetically related. These concerns are 

exacerbated by the fact that the relevance of genomic data 

available today may have unimaginable consequences in some 

decades down the line. 

A technical protection measure includes: 

• Advanced de-identification techniques. 

• Differential privacy protocols that append judiciously 

tuned noise to sets of data. 

• Homomorphic approaches to crypto which allow 

computation on ciphered data. 

 
7.2 Security Risks 

• The security risk associated with data on rare diseases not 

only includes threats from opportunistic cybercriminals 

but also includes threats from more advanced state 

sponsors. Ransomware attacks and data breaches pose a 

direct threat to patient privacy and the continuity of 

research, and insider threats can already exploit atypical 

access privileges to gain unauthorized access to health 

data. 

• Multilayered security should involve encryption of 
resources both at rest and in transit, fine-grained controls 

that enforce principles of least privilege, and effective 

network security designs. Routine security auditing and 

updating of incident response plans are in place to ensure 

that countermeasure actions remain current with new 

attack vectors. 

 
7.3 Bias and Fairness 

The causes of bias in rare disease AI systems are similar to the 

existing healthcare disparities, but come with specific 

difficulties associated with a global distribution of rare 

diseases: 

• Geographic bias - emerges from the concentration of 

research activities in high-income countries. 

• Socioeconomic differences - have an impact on genetic 

testing and specialized care access. 

This is because genetic variants potentially relevant to 

pathogenicity in one population group might not be the same 

in the other population group. Reduction measures involve 

holistic interventions (such as diverse recruitment campaigns 

that proactively aim to represent underrepresented groups), 
inclusive study design (reflecting the requirements of various 

communities), and algorithmic fairness measures that have the 

potential to identify and remediate systematic biases in 

prediction. 

 
7.4 Ethical Concerns 

The tension between need and autonomy that could have 

ensued in relation to whether autonomy should be respected or 

not in rare disease research amplifies the complexity of 

informed consent. With rare diagnoses, patients and families 

are pressured to engage in research that could potentially be 

beneficial to their situation, which may undermine the 

voluntary aspect of consent. 

Key ethical issues include: 

• Informed consent complexity in genomic research 

contexts. 

• Ethics in the field of data sharing and the provision of 

rights to all or an individual. 

• Regulatory compliance with GDPR, HIPAA, and 

specialized policies like Orphanet guidelines. 

 

8. FUTURE SCOPE 

 
8.1 Innovations in Technology 

One of the most promising areas for the development of AI for 

rare diseases is transfer learning. Researchers will be able to 

use data from model organisms and related data sources to 

enhance predictions for rare human diseases, thanks to 
developments in cross-species and cross-modal transfer 

learning. 

Important advancements consist of: 

• Meta-learning strategies for few-shot learning situations 

that are frequently encountered in rare illness settings 

• Domain adaptation strategies to ensure AI models can 

serve a variety of patient groups and close population 

gaps 

• Attention-based mechanisms in multimodal fusion 

strategies, such as early, late, and intermediate fusion 

approaches. 
 
8.2 Teamwork Methodologies 

Initiatives for international data sharing that can overcome the 

basic drawback of small sample sizes will become 

increasingly important in the future of rare disease research. 

Standardized protocols and incentive alignment mechanisms 

are necessary for federated learning networks to succeed, but 

they offer potential solutions for protecting privacy while 

facilitating collaborative model creation. International 

collaboration, which is crucial for rare illness research, is 

hampered by disparate jurisdictions' differing standards for 

data sharing and protection, making regulatory harmonization 

a significant problem. 

 
8.3 Accurate Medical Care 
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The final goal of AI-based applications in rare disease is 

custom-made pipeline to therapy: 

• Genomic-guided therapy selection is the use of genetic 

profiles to pair patients to the most appropriate and 

effective medicines. 

• Pharmacogenomics optimization: identification of the 

optimal dosage and the prediction of adverse effects. 

• Adaptive clinical trial designs, early termination of 

ineffective treatments and efficient assignment of 

patients. 

• The multi-omics fusion methods that bio-sensitive 

proteomic, metabolomic, transcriptomic, and genomic 

data remain useful in the process of finding biomarkers. 

Although wearable technology can offer continuous 

monitoring capabilities for rare diseases due to the digital 

biomarkers it generates, liquid biopsies could provide 
promising non-invasive monitoring options. 

 
8.4 Integration of Digital Health 

• The integration of AI and IoT technology opens 

possibilities that have never been imagined: continuous 

monitoring of patients with rare diseases. As much as 

smart home sensors have the capacity to assess altered 

behavior and functional efficacies, wearable technology 

may provide complete physiological data that captures 

disease patterns. 

• Digital therapeutics is a new subcategory of therapies in 

which individualized care is provided through digital 

channels by using artificial intelligence (AI) [10]. Virtual 

reality applications can have potential in symptom 
management and rehabilitation, and the development of 

appropriate regulatory channels remains a significant 

challenge. 

 

 

FIGURE - 8.1: Future Scope in AI Therapeutics 

 
8.5 Treatments of the Future 

With artificial intelligence under control and the integration of 

gene editing technology, rare genetic diseases can now be 

treated more efficiently. The future scope of the treatment 

process is depicted in Figure 8.1. AI-based CRISPR may be 

optimized to increase the accuracy and effectiveness of the 

gene-editing process, and predictive systems might be used to 

detect and manage undesired outcomes. 

Some of the new treatment methods include: 

• Antisense oligonucleotides generated by AI and specific 

to RNA sequences. 

• Improved stability by machine learning-assisted protein 

engineering. 

• AI regenerative medicine uses to guide tissue engineering 

and ensure full reprogramming of cells. 

 

9. CONCLUSION 

 

Key Findings: This systematic review has not only 

highlighted the significant issues at the interface between 

diagnosing ultra-rare genetic disorders and the transformative 

opportunities of ML/DL methods. We have reviewed multiple 
studies and found that, in various areas, there were 

improvements in performance, with diagnostic accuracies 

ranging in high ranges. The most commonly used architecture 

is CNNs (the majority of studies), but new specialized 

methods, such as transfer learning and few-shot learning, have 

become important in addressing the problem of data scarcity. 

NEDAMSS as a Model System: NEDAMSS disease is an 

example of an ultra-rare disorder that has proven the potential 

of AI. The suggested comprehensive diagnostic pipeline will 

decrease the average diagnosis duration significantly and, with 

the help of combined analysis, will reach high accuracy rates. 

The longitudinal ML models can be tested ideally on the 
progressive nature, and the molecular characterization of 

IRF2BPL can present valuable biological constraints used to 

develop the models. 

The Path Forward: It will also need interdisciplinary 

collaboration, like it has never been, to combine AI, clinical 

genetics, molecular biology, regulatory science, and patient 

advocacy to succeed. Technical advancements should be 

based on biological knowledge, and cooperation between the 

world via federated learning networks is the only possible way 

of achieving adequate sample sizes. 

The result of success will be significant changes in patient 
outcomes, such as fewer diagnostic delays, better prognostic 

accuracy, and better quality of life for patients and their 

families with ultra-rare genetic diseases. With collective 

innovation, strict validation, and patient-centric development, 

AI-based solutions will change how the most infrequent 

human diseases are diagnosed, prognosed, and treated. 
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