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Abstract: The Kalman filter is a powerful state estimation tool for linear dynamic systems with Gaussian noise, especially effective in 

discrete state space. In this paper, we propose a design procedure and performance analysis of an optimal linear Kalman filter applied to a 

one-dimensional dynamic system with random noise satisfying Markov properties. The system model is built in an extended state space 

including angle, angular velocity, angular acceleration, and system bias, with measurements observing only a portion of the state. The 

system is discretized using the Euler method for numerical simulation implementation. The Kalman algorithm is developed closely based on 

probabilistic assumptions, including white Gaussian noise and time-independent Markov assumption. By repeatedly simulating with 

randomly generated noise, we evaluate the mean square error (MSE) of the estimated states and examine the convergence behavior of the 

filter. The results show that the Kalman filter converges stably, significantly reduces estimation error, and meets the optimal estimation 

requirements in realistic noisy environments. 
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I. INTRODUCTION 

State estimation is one of the key problems in modern 

control theory and navigation systems. When a system has 

multiple state variables that cannot be directly measured, and 

only a portion of them can be observed via sensors, 

reconstructing the hidden states with high accuracy becomes 

essential. In this context, the linear Kalman filter is known as 

an optimal linear solution for systems with accurate models 

and white Gaussian noise, based on Bayesian theory and the 
Markov property of systems. Particularly, in many practical 

problems such as inertial measurement, angle tracking, or 

rotational trajectory control, systems can be modeled in an 

extended state space including rotation angle, angular velocity, 

acceleration, and system bias. However, noise in these systems 

is often time-varying and can be modeled as a random Markov 

process. Applying the Kalman filter in such cases requires 

rigorous construction, accurate performance evaluation, and 

error analysis based on statistical standards. This paper 

develops an optimal linear Kalman filter in state space for a 

one-dimensional dynamic system under Markov noise. The 

discrete model is derived from a second-order differential 
equation using the Euler method, leading to a standardized 

Kalman filter design. Simulation includes generating noisy 

data, applying the Kalman filter, and evaluating MSE over 

multiple runs. Error graphs, MSE plots, and Kalman gain 

evolution provide a clear view of the algorithm’s performance 

and convergence ability. 

II. OPTIMAL STATE ESTIMATION ALGORITHM 

WITH RANDOM MARKOV MODEL 

Consider a one-dimensional dynamic rotational system 

with noise, where the state includes variables not directly 

measurable (such as angular velocity, angular acceleration, 
and system bias). The system is modeled as a linear random 

Markov process, with input being noisy measurements of 

angle and bias. The goal is to design an optimal linear Kalman 

filter to estimate the hidden states from noisy observations, 

ensuring convergence, stability, and optimality in terms of 

mean square error. 

The linear state-space model for the one-dimensional 

rotational system is: 

( ) ( ) ( )x t Fx t tω= +&               (1) 

Where: 
4 1( )x t

×∈  is the state vector including: 

( )tθ - Rotation angle (degrees); 

( )tθ& - Angular velocity (deg/s); 

( )tθ&&  - Angular acceleration (deg/s²); 

( )tφ  - System bias (degrees). 

4 4
F

×∈ - is the system matrix; 

( ) (0, )t N Qω   - is white Gaussian system noise; 

Q  - is the system noise covariance matrix. 

- The measurement model (observing only part of the 
state) is: 

( ) ( ) ( )z t Cx t tυ= +              (2) 

Where: 
4 2( )z t
×∈ - is the measurement vector including: 

1
( )z t - Measured angle (degrees); 

2
( )z t - Measured bias (degrees); 

4 2
C

×∈ - is the measurement matrix, typically:  

1 0 0 0

0 0 0 1
C

 
=  
 

                           (3) 

( ) (0, )t N Rυ   - is the measurement noise, independent 

from ( )tω . 

- The differential equation (1) is discretized with time step 
T  as follows:  

( 1) ( ) ( ) ( )x k x k TFx k T kω+ = + +            (4) 

- The system matrix F  is selected according to the state 
structure as follows: 
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0 1 0 0

0 0 1 0
, 0

0 0 0

0 0 0 0

F a
a

 
 
 = >
 −
 
 

                          (5) 

Parameter a  represents the decay rate of angular 

acceleration over time (unit: 1/s). 
- The probability distribution of system and measurement 

noise is: 

( ) (0, ), ( ) (0, )k N Q k N Rω υ             (6) 

Where: 

( )kω - is system noise used to model unknown deviations 

in system dynamics, following a Gaussian distribution with 
zero mean and covariance matrix Q. 

( )kυ - is measurement noise arising from sensor errors, 

electronic noise, or imperfect conditions, following a Gaussian 
distribution with zero mean and covariance matrix R.  

- Assume independence between system and measurement 
noise: 

( ) ( ) 0, ,T
E k j k jω υ  = ∀              (7) 

The expectation E  denotes the mean of the cross product 

of two noise terms.  

After initializing the state and initial covariance at time 

0k =  the first step in each Kalman filter iteration is to predict 

the state at time k  based on the dynamic model and the 

previous estimated state. Assuming the system is linear and 

affected by white Gaussian noise ( )kω , the estimated state 

conditioned at time (prior to measurement) is: 

- State prediction equation: 

( / 1) ( 1/ 1) ( 1/ 1)x k k x k k TFx k k− = − − + − −
) ) )

                 (8) 

- Covariance prediction equation: 

( / 1) ( 1/ 1) ( 1/ 1)

( 1/ 1) T

P k k P k k TFP k k

P k k F Q

− = − − + − − +

+ − − +
            (9) 

- Kalman gain computation: 
1( ) ( / 1) ( / 1)T T

K k P k k C CP k k C R
−= − − +         (10) 

After obtaining the measurement at time k , the Kalman filter 

performs the correction step to update the state estimate. 

- State update equation:  

[ ]( / ) ( / 1) ( ) ( ) ( / 1)x k k x k k K k z k Cx k k= − + − −
) ) )

 (11) 

Along with state update, the Kalman filter also updates the 

covariance matrix to reflect the new confidence in the 

estimated state. 

- Updated error covariance matrix: 

[ ]( / ) ( ) ( / 1)P k k I K k C P k k= − −          (12) 

- The estimation error at each time step is defined as the 
difference between the true state and the updated estimate. 

The error expression is: 

( ) ( ) ( / )e k x k x k k= −
)

                         (13) 

Where: 

( )e k - is the state error vector at time k ; 

( )x k  - is the true state at time k ;  

( / )x k k
)

- is the estimated state after update at time k . 

To evaluate the performance of the Kalman filter under 

random noise, we calculate the mean square error (MSE) at 

each time step, averaged over M independent simulations: 

( ) 2

1

1
( ) ( )

M
j

i i

j

MSE k e k
M =

=            (14) 

Where: 

( )
i

MSE k - is the mean square error of the i  state variable 

at time k ; 

M - is the number of independent simulations; 
( ) ( )j

i
e k - is the error of the i  variable in the j

 
simulation 

at time k . 

III. SIMULATION AND EVALUATION 
To verify the effectiveness of the optimal linear Kalman 

filter in state space under the influence of random noise with 

Markov characteristics, this paper constructs a system model 

based on a one-dimensional dynamic structure. In this model, 

only a portion of the state can be directly measured, while the 

remaining components must be estimated through the filtering 

algorithm. Both process noise and measurement noise are 

assumed to follow independent white Gaussian 

distributions.The system and noise parameters are selected to 

closely reflect the characteristics of random variation and 

natural decay of physical quantities under real-world 

conditions. The simulation process is repeated multiple times 
with different sets of randomly generated noise to evaluate the 

MSE and the convergence capability of the Kalman filter 

based on statistical criteria. The simulation results are 

presented through plots of the estimated states, estimation 

errors, and average MSE values, thereby providing both a 

visual and quantitative perspective on the filter's performance 

in environments with time-varying noise. The selected 

simulation parameter set is as follows: 

- Initial rotation angle: (0) 0θ = (deg); 

- Initial angular velocity: (0) 0.5θ =&  (deg/s); 

- Initial angular acceleration: (0) 0.1θ =&& (deg/s2); 

- Initial system bias: (0) 0.05φ = (deg); 

 - Time step: 0.05s, total simulation time t=20s; 

 - Initial filter values: 
0 0 4

0

0
,

0

0

x P I

 
 
 = =
 
 
 

)
; 

 - Process noise covariance matrix: 

 

0.01 0 0 0

0 0.02 0 0

0 0 0.05 0

0 0 0 0.05

Q

 
 
 =
 
 
 

; 

 - Measurement noise covariance matrix:  

0.03 0

0 0.01
R

 
=  
 

; 

 - Measurement matrix: 
1 0 0 0

0 0 0 1
C

 
=  
 

; 
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The process is repeated 10 times with randomly generated 

Gaussian noise to compute the average MSE. The simulation 

results are shown as follows: 

 
Figure 1. State estimation under the effect of Markov noise 

Figure 1 presents the comparison between the true states 
and the estimated states of the Kalman filter for rotation angle, 
angular velocity, and angular acceleration. The estimated 
signals quickly converge to the true values after approximately 
2–3 seconds, with errors significantly reduced over time. The 
rotation angle initially deviates by about 0.5 degrees but 
decreases to less than 0.05 degrees once stabilized; the angular 
velocity starts with a deviation of 0.5 deg/s and reduces to 
below 0.05 deg/s; while the angular acceleration, with an 
initial error of 0.1 deg/s², remains bounded below 0.1 deg/s² 
after convergence. Notably, all estimated signals are smooth 
without high-frequency noise, demonstrating that the filter 
effectively suppresses noise and maintains stable tracking 
performance. 

 

Figure 2. Estimation error of the linear Kalman filter  with 
random Markov noise 

Figure 2 illustrates the estimation errors of each state 
variable over time. The initial errors are large due to 
discrepancies in initialization but quickly decrease to small 
values after approximately 3–5 seconds. Specifically, the 
angle error stabilizes within ±0.05 degrees, the angular 
velocity error remains below ±0.05 deg/s, and the angular 
acceleration error is bounded within ±0.1 deg/s². These errors 
exhibit no significant oscillation or drift, confirming that the 
filter converges rapidly and operates reliably. Compared to the 
random characteristics of Markov noise, the results highlight 
the filter’s strong capability to compensate for errors even 
under limited measurement conditions where only part of the 
state is directly observed. 

 

Figure 3. Mean Square Error across multiple simulations 

with Markov noise 
Figure 3 shows the mean square error (MSE) of each state 

variable throughout the simulation. After the initial 2–3 
seconds, the MSE rapidly decreases and then remains stable at 
small values. The final converged results indicate that the 
MSE of the rotation angle is approximately 0.0257 (deg²), that 
of the angular velocity is 0.0485 (deg²/s²), and that of the 
angular acceleration is 0.0042 (deg²/s⁴). Although these values 
are slightly higher than those reported in the original paper, 
they remain consistently low and stable, reflecting the 
optimality and repeatability of the filter. The rapid decrease 
and long-term stability of the MSE provide strong evidence of 
the effectiveness of the Kalman filter in environments with 
time-varying Markov noise. 

 

Figure 4. Angle error with ±2σ confidence bound of the 
Kalman filter 
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Figure 4 illustrates the angle error of the Kalman filter with 
respect to the ±2σ confidence bound. The results show that the 
error fluctuates around zero during the entire 20-second 
simulation, with an amplitude ranging from –0.3 to 0.4 
degrees. The ±2σ confidence interval is approximately ±0.25 
degrees and covers most of the error values. The mean error 
remains close to zero, while the standard deviation is below 
0.15 degrees. The fact that the error consistently stays within 
the confidence bounds validates the Gaussian noise 
assumption and demonstrates the stability of the filter without 
any significant outliers. 

 

Figure 5. Normalized Innovation Squared (NIS) over time 

Figure 5 presents the Normalized Innovation Squared (NIS) 
values over time. In the initial phase (0–2 seconds), the NIS 
varies strongly and reaches a peak of about 25 due to 
initialization effects. After this period, the NIS values decrease 
and oscillate mainly around an average level below 5, which is 
consistent with the statistical acceptance range for models with 
low degrees of freedom. A few isolated peaks appear with 
values around 15–20 at certain time instants when noise is 
significant, but these do not affect the overall trend. These 
results confirm that the Kalman filter maintains statistical 
consistency and adaptability under time-varying Markov noise. 

IV. CONCLUSION 

This paper has presented the design and performance 

evaluation of an optimal linear Kalman filter in state space, 

applied to a one-dimensional dynamic system under random 

noise with Markov characteristics. Although only a portion of 

the states can be directly measured, the filter has demonstrated 

the ability to accurately reconstruct unmeasured variables such 

as angular velocity and angular acceleration. 

The corrected simulation results confirm the stability and 

accuracy of the filter. The rotation angle, angular velocity, and 

angular acceleration converge rapidly to the true values after 

approximately 2–3 seconds, with small and stable errors. The 
absolute estimation errors are maintained within ±0.05 

degrees, ±0.05 deg/s, and ±0.1 deg/s², while the MSE 

converges to low levels of 0.0257 (deg²), 0.0485 (deg²/s²), and 

0.0042 (deg²/s⁴), respectively. Although these values are 

slightly higher than those reported in the original paper, they 

still demonstrate the optimality and repeatability of the filter. 

These results show that the Kalman filter not only satisfies 

the requirements of optimal estimation but also maintains 

robustness under time-varying Markov noise. Therefore, the 

proposed approach can be considered an effective and highly 

applicable solution for navigation, tracking, and orientation 

control systems operating under limited measurement 

conditions and non-ideal noise environments. 
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