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Abstract: The Kalman filter is a powerful state estimation tool for linear dynamic systems with Gaussian noise, especially effective in
discrete state space. In this paper, we propose a design procedure and performance analysis of an optimal linear Kalman filter applied to a
one-dimensional dynamic system with random noise satisfying Markov properties. The system model is built in an extended state space
including angle, angular velocity, angular acceleration, and system bias, with measurements observing only a portion of the state. The
system is discretized using the Euler method for numerical simulation implementation. The Kalman algorithm is developed closely based on
probabilistic assumptions, including white Gaussian noise and time-independent Markov assumption. By repeatedly simulating with
randomly generated noise, we evaluate the mean square error (MSE) of the estimated states and examine the convergence behavior of the
filter. The results show that the Kalman filter converges stably, significantly reduces estimation error, and meets the optimal estimation
requirements in realistic noisy environments.
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I. INTRODUCTION ensuring convergence, stability, and optimality in terms of
State estimation is one of the key problems in modern = mean square error.
control theory and navigation systems. When a system has The linear state-space model for the one-dimensional
multiple state variables that cannot be directly measured, and  rotational system is:
only a portion of them can be observed via sensors, x(t) = Fx(t)+axt) 1)
reconstructing the hidden states with high accuracy becomes Where:

essential. In this context, the linear Kalman filter is known as

4x1 . . . .
an optimal linear solution for systems with accurate models x(#)e ™ is the state vector including:

and white Gaussian noise, based on Bayesian theory and the 6(t) - Rotation angle (degrees);
Markov property of systems. Particularly, in many practical 6(r) - Angular velocity (deg/s);
problems such as inertial measurement, angle tracking, or .

rotational trajectory control, systems can be modeled in an (1) - Angular acceleration (deg/s?);
extended state space including rotation angle, angular velocity, @(t) - System bias (degrees).

acceleration, and system bias. However, noise in these systems
is often time-varying and can be modeled as a random Markov
process. Applying the Kalman filter in such cases requires

F e[ ¥~ is the system matrix;
ao(t)0 N(0,Q) -is white Gaussian system noise;

rigorous construction, accurate performance evaluation, and Q - is the system noise covariance matrix.

error analysis based on statistical standards. This paper - The measurement model (observing only part of the
develops an optimal linear Kalman filter in state space for a state) is:

one-dimensional dynamic system under Markov noise. The (1) = Cx(t) + v(1t) )
discrete model is derived from a second-order differential Where:

equation using the Euler method, leading to a standardized
Kalman filter design. Simulation includes generating noisy
data, applying the Kalman filter, and evaluating MSE over 7, (t) - Measured angle (degrees);
multiple runs. Error graphs, MSE plots, and Kalman gain z,(t) - Measured bias (degrees);
evolution provide a clear view of the algorithm’s performance

and convergence ability.
II. OPTIMAL STATE ESTIMATION ALGORITHM |1 000
WITH RANDOM MARKOV MODEL C= 000 1

Consider a one-dimensional dynamic rotational system A0 NO.R s th ¢ noise. ind dent
with noise, where the state includes variables not directly v(o) (0.R) - is the measurement noise, independen

z(t)e 0 ** - is the measurement vector including:

CeJ*® - is the measurement matrix, typically:

3

measurable (such as angular velocity, angular acceleration, from (7).

and system bias). The system is modeled as a linear random - The differential equation (1) is discretized with time step
Markov process, with input being noisy measurements of T as follows:

angle and bias. The goal is to design an optimal linear Kalman x(k+1) = x(k) +TFx(k) + T axk) @)

filter to estimate the hidden states from noisy observations, - The system matrix F is selected according to the state

structure as follows:
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01 0 O
00 1 O
F = ,a>0 (@)
00 —a O
00 0 O
Parameter a represents the decay rate of angular

acceleration over time (unit: 1/s).
- The probability distribution of system and measurement
noise is:
(k) N(0,Q), v(k)[D N(O,R)
Where:
(k) - is system noise used to model unknown deviations

©)

in system dynamics, following a Gaussian distribution with
zero mean and covariance matrix Q.

v(k) - is measurement noise arising from sensor errors,
electronic noise, or imperfect conditions, following a Gaussian
distribution with zero mean and covariance matrix R.

- Assume independence between system and measurement
noise:

E[ ao(kyv(j)" | =0, Vk, j (7)

The expectation E denotes the mean of the cross product
of two noise terms.

After initializing the state and initial covariance at time
k =0 the first step in each Kalman filter iteration is to predict
the state at time k based on the dynamic model and the
previous estimated state. Assuming the system is linear and
affected by white Gaussian noise aXk), the estimated state

conditioned at time (prior to measurement) is:
- State prediction equation:

xtklk=1)=x(k=1/k-D+TFx(k—1/k—-1) ®)
- Covariance prediction equation:
Ptk/k-1)=Pk=1/k-1)+TFP(k-1/k-1)+
+P(k=1/k-DF" +Q ©)
- Kalman gain computation:
K(k)=P(k/k-1)C"CP(k/k—-1)C" +R™' (10)

After obtaining the measurement at time k , the Kalman filter
performs the correction step to update the state estimate.

- State update equation:

x(k/k)=x(k/k—1)+K(k)[z(k)—Cx(k / k—1)] (11)

Along with state update, the Kalman filter also updates the
covariance matrix to reflect the new confidence in the
estimated state.

- Updated error covariance matrix:

P(k/k)=[I-K(k)C|P(k/k-1) 12)

- The estimation error at each time step is defined as the
difference between the true state and the updated estimate.
The error expression is:

e(k)=x(k)—x(k/k)

Where:

e(k) - is the state error vector at time & ;

13)

x(k) -1is the true state at time & ;

X(k / k) - is the estimated state after update at time & .
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To evaluate the performance of the Kalman filter under
random noise, we calculate the mean square error (MSE) at
each time step, averaged over M independent simulations:

M
MSE, (k) = izejﬂ k)’
M j:l

Where:
MSE, (k) - is the mean square error of the i state variable

(14)

at time & ;
M - is the number of independent simulations;
el.(j )(k) - is the error of the i variable in the j simulation

at time k .
II1. SIMULATION AND EVALUATION

To verify the effectiveness of the optimal linear Kalman
filter in state space under the influence of random noise with
Markov characteristics, this paper constructs a system model
based on a one-dimensional dynamic structure. In this model,
only a portion of the state can be directly measured, while the
remaining components must be estimated through the filtering
algorithm. Both process noise and measurement noise are
assumed to follow independent white  Gaussian
distributions.The system and noise parameters are selected to
closely reflect the characteristics of random variation and
natural decay of physical quantities under real-world
conditions. The simulation process is repeated multiple times
with different sets of randomly generated noise to evaluate the
MSE and the convergence capability of the Kalman filter
based on statistical criteria. The simulation results are
presented through plots of the estimated states, estimation
errors, and average MSE values, thereby providing both a
visual and quantitative perspective on the filter's performance
in environments with time-varying noise. The selected
simulation parameter set is as follows:

- Initial rotation angle: €(0)= 0 (deg);

- Initial angular velocity: 6(0)=0.5 (deg/s);
- Initial angular acceleration: 6(0)=0.1 (deg/s?);
- Initial system bias: ¢(0) =0.05 (deg);

- Time step: 0.05s, total simulation time t=20s;

0
- Initial filter values: x, = 8 P =1,
0
- Process noise covariance matrix:
001 O 0 0
| 0 002 0 0 |
1o 0o o005 o0
0 0 0 0.05

- Measurement noise covariance matrix:

003 O
R = ;
{ 0 0.01}

- Measurement matrix: C = {

100 0]
000 1)
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The process is repeated 10 times with randomly generated
Gaussian noise to compute the average MSE. The simulation

results are shown as follows:
Angle - Avg. MSE: 0.0257 (deg?)

30
True angle
= sl - — — -Estimated angls | |
=
o
=
E 10
o T . . L L . L L L
(o] 2 4 6 8 10 12 14 16 18 20
—_ Angular Velocity - Avg. MSE: 0.0485 (degzlsz}
w T T T T T T T v x
st P L3, | = - Eslimated velodity | |
‘_g 1 n ‘lw‘_-"" 'a,““-l“‘“‘" 1
R o
Zos5fFL h B
& 2t
5 Ofd B
QE: L 1 L L 1 1 L 1 1 1
0 2 4 6 8 10 12 14 16 18 20
N@ 03 Angular Acceleration - Avg. MSE: 0.0042 (degzlsa}
o 0. T T T T . T T
.i%, 1 True acceleration
g 02F A = = = -Estimated acceleration | |
=} 1
= L)
@ 1
g0 ."-l [ )
o . I :‘- Voo - -l
2 0 A S i e = e L - ~|
& | oY
301 L . . L L . L L L
E (o] 2 4 6 8 10 12 14 16 18 20

Time (s)
Figure 1. State estimation under the effect of Markov noise

Figure 1 presents the comparison between the true states
and the estimated states of the Kalman filter for rotation angle,
angular velocity, and angular acceleration. The estimated
signals quickly converge to the true values after approximately
2-3 seconds, with errors significantly reduced over time. The
rotation angle initially deviates by about 0.5 degrees but
decreases to less than 0.05 degrees once stabilized; the angular
velocity starts with a deviation of 0.5 deg/s and reduces to
below 0.05 deg/s; while the angular acceleration, with an
initial error of 0.1 deg/s?, remains bounded below 0.1 deg/s?
after convergence. Notably, all estimated signals are smooth
without high-frequency noise, demonstrating that the filter
effectively suppresses noise and maintains stable tracking
performance.
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Figure 2. Estimation error of the linear Kalman filter with
random Markov noise
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Figure 2 illustrates the estimation errors of each state
variable over time. The initial errors are large due to
discrepancies in initialization but quickly decrease to small
values after approximately 3-5 seconds. Specifically, the
angle error stabilizes within +0.05 degrees, the angular
velocity error remains below +0.05 deg/s, and the angular
acceleration error is bounded within +0.1 deg/s?. These errors
exhibit no significant oscillation or drift, confirming that the
filter converges rapidly and operates reliably. Compared to the
random characteristics of Markov noise, the results highlight
the filter’s strong capability to compensate for errors even
under limited measurement conditions where only part of the
state is directly observed.
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Figure 3. Mean Square Error across multiple simulations
with Markov noise

Figure 3 shows the mean square error (MSE) of each state
variable throughout the simulation. After the initial 2-3
seconds, the MSE rapidly decreases and then remains stable at
small values. The final converged results indicate that the
MSE of the rotation angle is approximately 0.0257 (deg?), that
of the angular velocity is 0.0485 (deg?s?), and that of the
angular acceleration is 0.0042 (deg?/s*). Although these values
are slightly higher than those reported in the original paper,
they remain consistently low and stable, reflecting the
optimality and repeatability of the filter. The rapid decrease
and long-term stability of the MSE provide strong evidence of
the effectiveness of the Kalman filter in environments with
time-varying Markov noise.
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Kalman filter
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Figure 4 illustrates the angle error of the Kalman filter with
respect to the +2¢ confidence bound. The results show that the
error fluctuates around zero during the entire 20-second
simulation, with an amplitude ranging from -0.3 to 0.4
degrees. The +2c confidence interval is approximately +0.25
degrees and covers most of the error values. The mean error
remains close to zero, while the standard deviation is below
0.15 degrees. The fact that the error consistently stays within
the confidence bounds validates the Gaussian noise
assumption and demonstrates the stability of the filter without
any significant outliers.
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Figure 5. Normalized Innovation Squared (NIS) over time

Figure 5 presents the Normalized Innovation Squared (NIS)
values over time. In the initial phase (0-2 seconds), the NIS
varies strongly and reaches a peak of about 25 due to
initialization effects. After this period, the NIS values decrease
and oscillate mainly around an average level below 5, which is
consistent with the statistical acceptance range for models with
low degrees of freedom. A few isolated peaks appear with
values around 15-20 at certain time instants when noise is
significant, but these do not affect the overall trend. These
results confirm that the Kalman filter maintains statistical
consistency and adaptability under time-varying Markov noise.

IV. CONCLUSION

This paper has presented the design and performance
evaluation of an optimal linear Kalman filter in state space,
applied to a one-dimensional dynamic system under random
noise with Markov characteristics. Although only a portion of
the states can be directly measured, the filter has demonstrated
the ability to accurately reconstruct unmeasured variables such
as angular velocity and angular acceleration.

The corrected simulation results confirm the stability and
accuracy of the filter. The rotation angle, angular velocity, and
angular acceleration converge rapidly to the true values after
approximately 2-3 seconds, with small and stable errors. The
absolute estimation errors are maintained within +0.05
degrees, +0.05 deg/s, and 0.1 deg/s?, while the MSE
converges to low levels of 0.0257 (deg?), 0.0485 (deg?/s?), and
0.0042 (deg?s*), respectively. Although these values are
slightly higher than those reported in the original paper, they
still demonstrate the optimality and repeatability of the filter.
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These results show that the Kalman filter not only satisfies
the requirements of optimal estimation but also maintains
robustness under time-varying Markov noise. Therefore, the
proposed approach can be considered an effective and highly
applicable solution for navigation, tracking, and orientation
control systems operating under limited measurement
conditions and non-ideal noise environments.
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